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Abstract

In this paper we prove the existence of full measure unbounded chaotic attractors which are persistent
under parameter perturbation (also called robust). We show that this occurs in a discontinuous piecewise
smooth one-dimensional map f , belonging to the family known as Nordmark�s map. To prove the result
we extend the properties of a full shift on a �nite or in�nite number of symbols to a map, here called
Baker-like map with in�nitely many branches, de�ned as a map of the interval I = [0; 1] into itself with
in�nitely branches due to expanding functions with range I except at most the rightmost one. The
proposed example is studied by using the �rst return map in I, which we prove to be chaotic in I making
use of the border collision bifurcations curves of basic cycles. This leads to a robust unbounded chaotic
attractor, the interval (�1; 1], for the map f .

Kyewords. Unbounded chaotic attractors, Robust full measure chaotic attractors, Piecewise smooth
systems, Full shift maps, Border collision bifurcations

1 Introduction

The study of the properties of one-dimensional discrete dynamical systems is mainly performed considering
a function which maps a compact interval into itself. At the present time there are many works dealing
with such systems, which consider both continuous and discontinuous maps (see e.g. [16], [7], [17], [24]).
The various de�nitions of attractor given in the current literature refer almost all to compact sets ([24],
[13], [26]). Moreover, the interest is often focussed on chaotic attractors, which in one-dimensional maps are
cyclic or acyclic chaotic intervals, and thus bounded invariant sets in which the boundaries are given by the
images of critical points (see [2]). In particular, in such cases the contact of the invariant set with the basin�s
boundary leads to a change in the dynamics. A typical example is the logistic map T (x) = �x(1 � x); at
� = 4 a chaotic interval exists (not attracting) and for � > 4 mainly divergent dynamics occur (although an
invariant chaotic set still exists in [0; 1]), and many examples can also be found in applied models.
However, there are several systems, also in applications, that lead to unbounded trajectories which are

not diverging. This fact was emphasized for example in [6], and unbounded chaotic sets naturally arise in
the iteration of maps with a vanishing denominator. For example, the existence of a �non bounded chaotic
solution� in a one-dimensional map has been shown in [15] (see also [17] p.38). Further examples can be
found in [5], where the related theory and properties were extended to two-dimensional maps.
In the references cited above, the existence of unbounded chaotic sets of full measure was proved on

the basis of theoretical arguments, and in some cases even giving the closed analytical expression of such
trajectories in terms of elementary algebraic and transcendental functions. The main analytical tool used in
[5] to give the closed form solution of unbounded chaotic trajectories is related to a method based on the
Schröder functional equation, described in [15] (see also [17] and the Appendix in [5]).
Clearly, a full measure unbounded chaotic set in a one-dimensional (1D for short) map must include

periodic points which are dense in an unbounded interval. The basic characteristic of an unbounded and not
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diverging aperiodic trajectory is that it includes points arbitarily close to in�nity which are then followed by
points that come back (at �nite distance). Such a property leads to di¢ culties in the numerical iterations
of the system, since an over�ow error occurs even if the numerically generated trajectory is not diverging.
However, the technique applied in the present work, making use of the �rst return map of the system,
ultimately leads to the study of a map in a compact interval, avoiding such kind of numerical problems and
allowing suitable theoretical tools.
One more feature that is worth to mention is that the examples leading to a closed form solution of

the trajectories refer to full measure unbounded chaotic sets which are not structurally stable.1 That is, a
small perturbation of the parameters in the system causes the destruction of the invariant chaotic set (at
least in some characteristic features here mentioned, unbounded, chaotic, and full measure). However, an
important property is the persistence of chaotic attractors (i.e. really attracting sets in the phase space)
under parameter variations, also called robust chaotic attractos, following the de�nition given in [3]. One
of the goals of the present work is to show that full measure unbounded chaotic attractors can exist which
are also robust. In the proposed example, this property (existence of a full measure unbounded chaotic
attractor) persists for parameters in a wide region of positive measure of the parameter space.
To get this result we need to prove the existence of full chaos in a discontinuous map of the interval

I = [0; 1] into itself with in�nitely many discontinuity points, leading to a second goal. This subject is not
new in the literature. The basic tools are related to a Baker-like map on the interval I, with two branches,
which has been deeply studied since many years and is nowadays of common knowledge ([7]). That is, a
map from I into itself with one discontinuity point, and expanding functions in the two partitions, having
range I: It is also known as full shift on two symbols, and the same property of the map (of full chaos in
I) also holds in a full shift on any �nite number of symbols. That is, a map from I into itself with a �nite
number of discontinuity points, and in all the partitions expanding functions have range I:
The results have been extended to shifts on an in�nite number of symbols in [27], and thus to a map with

in�nitely many branches (in�nitely many discontinuity points) when all the in�nite branches of the map
have full range I; let us call it a Baker map with in�nitely many branches. This result was used in [12], and
it is used also in our study. In fact, we shall prove that the map may be reduced to this kind at the border
collision bifurcations of basic cycles (as we shall clarify in the next sections). However, as it is common to
occur, such bifurcation values belong to a set of zero measure in the parameter space, thus the unbounded
chaotic attractor proved in this way cannot be called robust. In order to prove that it is really persistent,
we need to extend the result on Baker maps with in�nitely many branches (based on [27]) also to maps in
which one branch is not of full range [0; 1]: This extension to what we call a Baker-like map with in�nitely
many branches, is necessary to reach the goal of proving the persistence of full measure unbounded chaotic
attractors.
The plan of the paper is as follows. In Sec.2 we introduce a discontinuous map de�ned in two partitions

belonging to the family proposed by Nordmark ([18], [19]), with a linear branch in the left side of x = 0
and an hyperbolic branch in x > 0. The branch on the right side has a vertical asymptote at x = 0. We
prove that the dynamic of the system in the interesting parameter range can be studied by use of a suitable
�rst return map, which can be analytically described. This return map of the interval I = [0; 1] into itself
has in�nitely many discontinuity points �j which are accumulating to x = 0. All the branches are de�ned
by expanding functions having range I except at most the rightmost one, de�ned in a given interval [�; 1],
whose range can be any interval [0; y] with 0 < y � 1: That is, a Baker-like map with in�nitely many
discontinuity points in our de�nition, given in Sec.3, where we prove that it is chaotic in [0; 1] by using the
standard tools, that is, proving that transitivity occurs in I, that periodic points are dense and there is
sensitivity with respect to the initial conditions. In Sec.4 we return to the proposed example where we use
the border collision bifurcation curves together with the fold bifurcation curves of basic cycles to show that
the �rst return map is a Baker-like map with in�nitely many discontinuity points for parameters belonging
to a wide region of the parameter space, of positive measure. Thus proving that the interval (�1; 1] is a
robust unbounded chaotic attractor for the map f . Sec.5 concludes.

1As it occurs, for example, in the logistic map T (x) = 4x(1� x):
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2 One-dimensional discontinuous piecewise-smooth map

The 1D discontinuous map which we are interested in comes from the applied context. Recent applications
in engineering lead to piecewise smooth systems (see e.g. [8]) among which much attention has been given
to the system proposed by Nordmark ([18], [19]), de�ned as follow:

x 7�! f�(x) =

�
fL(x) = ax+ � if x � 0
fR(x) = bx

� + � if x > 0
(1)

and mainly considered for  < 0 and � > 0: Recently, the discontinuos case occurring for  > 0 has been
also investigated. It was �rst considered in [20], then in [21] for the particular case  = 0:5, evidencing
the existence regions of stable basic cycles, and in [14] a complete investigation for any  > 0 has been
performed. In particular, in the present work we are interested in the following parameter ranges:

0 < a � 1; b < �1;  > 0 (2)

Regarding the parameter �; without loss of generality it can be �xed at � = 1. In fact, for any � > 0 the
transformation (x; a; b; �) �! (x��1; a; b���1; 1) leads from (1) to the map

x 7�! f(x) =

�
fL(x) = ax+ 1 if x � 0
fR(x) =

b
x + 1 if x > 0

(3)

We recall that by using the symbolic notation based on the letters L and R corresponding to the two
partitions IL = (�1; 0], IR = (0;+1), respectively, we may associate to each trajectory its itinerary by
using the letter L when a point belongs to the partition IL (L side for short) and R when a point belongs to
the partition IR (R side for short). A cycle can be represented by its �nite symbolic sequence. For example,
a cycle with symbolic sequence RLn corresponds to a cycle having one periodic point on the right partition
and n on the left one. Such cycles, or those with symbolic sequence LRn; are called basic cycles (or maximal
cycles, or principal cycles, see [8], [1], [9]). In the case of a piecewise smooth discontinuous map, it is common
to be faced also with non smooth bifurcations, called border collision bifurcations (BCB for short). This
term is here used to denote a periodic point of a cycle which is colliding with the discontinuity point x = 0
from the L side.
The properties of the dynamic behaviors in the considered region for the parameters given in (2) depend

on the straight line on the L side having slope smaller that 1 and on the rank-1 preimage of the origin on the
R side O�1R = (�b)

1
 which is larger than 1. Since no �xed point exists in the L side, any point on the left

side has an increasing sequence reaching the right side in a point � 1: At the same time, any point on the
right side larger than 1 is mapped below 1 in one iteration. Thus we can consider the interval (�1; 1] (range
of the map f). Moreover, for b < �1 any point in (0; 1] is mapped on the L side in one iteration. That is, in
the itinerary of any trajectory the symbol R is necessarily followed by L (i.e. at least one L). Thus the only
possible basic cycles are those with the symbolic sequence RLn; and they all exist for any n � 1; in suitable
parameter ranges. Indeed, let 0 < x0 < 1 be a point on the right side, then when b is small enough we have
fR(x0) << 0, and it takes many iterations by fL for the trajectory in order to reach the right side again.
To rigorously prove the dynamic properties of a map, it comes quite often useful to consider the �rst

return map in a suitable interval (some recent examples in discontinuous maps can be found in [10], [11]). In
the case of map f in (3), we can consider the �rst return map of f in the interval I = [0; 1], whose existence
and construction is given in the following Proposition:

Proposition 1. Let b < �1; 0 < a � 1: The dynamics of map f in (3) can be investigated by using the
�rst return map Fr(x) in the interval I = [0; 1]: Fr(x) is a discontinuous map with in�nitely many branches
de�ned as follows:

Fr(x) :=

8>>>>>><>>>>>>:

FRLn(x) = f
n
L � fR(x) if �n+1 � x � 1

FRLn+1(x) = f
n+1
L � fR(x) if �n+2 � x < �n+1

...
...

FRLn+j (x) = f
n+j
L � fR(x) if �n+j+1 � x < �n+j

...
...

(4)

3



where n � 0 is the smallest integer for which fnL � fR(1) 2 [0; 1);

FRLm(x) =
amb

x
+
1� am+1
1� a (5)

and the discontinuity points are preimages of the origin given by

�m+1 = f
�1
R � f�mL (0) =

 
�b

am�1
am(a�1) + 1

! 1


:

Proof. Since in the region b < �1 of the parameter space fR(1) = 1+ b < 0 holds, it is possible to de�ne
the �rst return map of f(x) in the interval [0; 1]. We recall that the �rst return map Fr(x) is de�ned as the
function which associates to any point x > 0 the �rst non negative value of the trajectory of x, that is, the
�rst value satisfying fn(x) � 0; which in our case is necessarily fn(x) 2 [0; 1): We also notice that when a
point � satis�es fn(�) = 0; then it is also fL � fn(�) = 1: So, given a value b < �1, let n � 0 be the smallest
integer such that

fnL � fR(1) 2 [0; 1) (6)

In the generic case satisfying fnL � fR(1) 2 (0; 1) we have that decreasing x from 1, fR(x) decreases and
the �rst return map decreases as well, so that it must be de�ned as Fr(x) = fnL � fR(x) for all the points in
a left interval of 1, up to a point �n+1 in which it holds

fnL � fR(�n+1) = 0: (7)

That is, �n+1 is a preimage of the origin of order (n + 1) as, taking the inverses in (7), we have �n+1 =
f�1R � f�nL (0). By applying fL on both sides in (7), we also have that

fn+1L � fR(�n+1) = 1 (8)

It follows that in a left neighborhood of the point �n+1 the �rst return map must be de�ned as Fr(x) =
fn+1L � fR(x); up to a point �n+2 in which it holds fn+1L � fR(�n+2) = 0; and so on. We can state that, for
any j � 0; the �rst return map is de�ned by branches of the following kind:

FRLn+j (x) = f
n+j
L � fR(x)

separated by discontinuity points (preimages of the origin).
The number of branches is necessarily in�nite. In fact, as described above, we have to consider the

preimages of the origin as follows:
�n+j+1 = f

�1
R � f�(n+j)L (0) (9)

which exist for any j � 0: Considering the inverse functions

f�1R (y) =

�
b

y � 1

� 1


(10)

f�1L (y) =
y � 1
a

(11)

the iterative application of the inverse on the left side leads to

f�kL (y) =
y

ak
� ak � 1
ak(a� 1) (12)

so that from (9), by using (12) and (10), we have explicitly:

�n+j+1 =

 
�b

an+j�1
an+j(a�1) + 1

! 1


(13)
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We know that the points f�(n+j)L (0) exist on the left side for any j � 0; because the function fL is increasing
with slope a � 1, so that as j ! 1 the points f�(n+j)L (0) tend to �1 and thus f�1R � f�(n+j)L (0) exist for
any j � 0 and tend to 0.
The �rst return map is necessarily de�ned by in�nitely many branches separated by discontinuity points,

preimages of the origin of rank (n+ j); denoted by �n+j . Fr(x) = FRLn(x) = fnL � fR(x) for �n+1 � x � 1,
and Fr(�n+1) = 0; by Fr(x) = FRLn+1(x) = fn+1L � fR(x) for �n+2 � x < �n+1 which is a continuous
increasing branch from 0 to 1, as Fr(�n+2) = fn+1L � fR(�n+2) = 0 and Fr(�n+1) = fn+1L � fR(�n+1) = 1;

and so on, this holds for any integer. That is, for any j, Fr(x) = FRLn+j (x) = f
n+j
L � fR(x) is a continuous

increasing branch for �n+j+1 � x < �n+j ; taking values from 0 to 1, as Fr(�n+j+1) = f
n+j
L � fR(�n+j+1) = 0

and Fr(�n+j) = f
n+j
L � fR(�n+j) = 1:

Examples of map f and its �rst return map Fr are shown in Fig.1.

Figure 1: Map f at  = 0:5; a = 0:9; b = �5:5; for which n = 4 in the de�nition of Fr(x) The function f is
drown in red, the images of the point x = 1 are marked in gray, while a few preimages of x = 0 in blue: In
the enlargement the related �rst return map Fr(x):

In the particular case in which the condition in (6) occurs as fnL � fR(1) = 0; we also have FRLn+1(x) =
fn+1L � fR(1) = 1; so that we can de�ne Fr(1) = fnL � fR(1) = 0 in the single point �n+1 = 1 and then
Fr(x) = fn+1L � fR(x) in [�n+2; �n+1): Notice that the range of FRLn+1(x) = fn+1L � fR(x) in [�n+2; 1] is
exactly [0; 1], and similarly, in all the other branches of Fr(x) which can be de�ned as above. Examples are
shown in Fig.2.
We have so proved that the �rst return map in [0; 1] is a discontinuous map de�ned by in�nitely many

increasing branches as explicitly given in (4).�

2.1 Border collision bifurcations

The particular case
fnL � fR(1) = 0 (14)

mentioned in the proof given above can be rewritten as fnL � fR � fL(0) = 0 (considering 1 = fL(0)), or
equivalently, by applying fL on both sides of (14), as follows:

FRLn+1(1) = f
n+1
L � fR(1) = 1 (15)

thus it corresponds to the BCB of a basic cycle with symbolic sequence RLn+1 (as in fact x = 0; as well as
x = 1; is a periodic point of period (n+ 2)):
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In terms of the preimages of the origin the condition in (14) also corresponds to

1 = f�1R � f�nL (0) (16)

that is, by using the de�nition in (9) with j = 0,

�n+1 = 1 (17)

The equation �n+1 = 1 of the BCB can be written in explicit form. In fact, considering n = n + 1 in (13)
and j = 0 we have

1 =

 
�b

an�1
an(a�1) + 1

! 1


equivalent to

�b = an � 1
an(a� 1) + 1

and, rearranging:

BRLn : b = �
1� an

an�1(1� a) (18)

which is the equation of the BCB of a cycle with symbolic sequence RLn:
Considering the example shown in Fig.1, as b increases from the value �5:5, the value FRL4(1) = f4L�fR(1)

of the rightmost branch of Fr increases, and when FRL4(1) = f4L � fR(1) = 1; from (15) the BCB of the
cycle with symbolic sequence RL4 occurs, as shown in Fig.2a (from (18) with a = 0:9 and n = 4 the
bifurcation value b ' �4:71742 is obtained). Di¤erently, as b decreases from the value �5:5, the value
FRL4(1) = f

4
L � fR(1) of the rightmost branch of Fr decreases, and when FRL4(1) = f4L � fR(1) = 0 (which

corresponds to f5L �fR(1) = 1) from (14) the BCB of the cycle with symbolic sequence RL5 occurs, as shown
in Fig.2b (from (18) with a = 0:9 and n = 5 the bifurcation value b ' �6:24158 is obtained). As we shall see
in Sec.4, as b decreases up to �1, all the BCB curves of cycles with symbolic sequence RLk for k > 4 are
crossed, and the �rst return map is expansive (the �rst derivative of all the component branches FRLm(x) is
larger than 1 in all the points of the related intervals).

Figure 2: First return map Fr(x) at  = 0:5; a = 0:9: In (a) b = �4:71742 BCB value of the maximal cycle
RL4. In (b) b = �6:24158; BCB value of the maximal cycle RL5:

A few properties of the �rst return map Fr immediately follow.
(i) Each component FRLn(x) of Fr is continuous and increasing from 0 to 1; except at most the rightmost

branch (as in the example in Fig.1), as F 0RLn(x) > 0; for x > 0: This also follows from the explicit expression
of the �rst derivative:

F 0RLn(x) = a
nf 0R(x) =

�b
x+1

an > 0
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(ii) Each component FRLn(x) of Fr is concave, since F 00RLn(x) < 0; for x > 0; as follows from the explicit
expression:

F 00RLn(x) =
d

dx
(
�b
x+1

an) =
b( + 1)

x+1
an < 0

(iii) The same properties (increasing branches and concavity) hold for any composition of the functions
FRLn(x).
(iv) An immediate consequence of the constructive de�nition of the �rst return map Fr; is that in�nitely

many unstable basic cycles necessarily exist. In fact, the �rst return map Fr(x) consists of in�nitely many
increasing and concave branches FRLj (x) which are continuous and take values from 0 to 1, at least for any
j � n+ 1. Thus unstable �xed points xRLj must exist for any j � n+ 1:
In the example given in Fig.1, where n = 4; the rightmost branch of Fr is de�ned by FRL4(x) = f4L�fR(x).

All the branches de�ned by FRL4+j = f
4+j
L � fR(x) exist for any j � 1 and intersect the diagonal, leading to

the existence of unstable cycles of period (5 + j) for any j � 1:

3 Chaos in a Baker-like map with in�nitely many discontinuity
points

In the previous section we have seen several properties of the map f that can be studied by the �rst return
map Fr : I ! I having three peculiarities: in�nitely many discontinuity points which have x = 0 as limit
point, all the continuous branches FRLj (x) of Fr take values from 0 to 1 except at most the rightmost one
and, as we shall prove in the next section, all the functions of the component branches are expanding. In
this section we prove that a map having these properties, which we call Baker-like map with in�nitely many
discontinuity points or equivalently with in�nitely many branches, is chaotic in I. Clearly, for the map f this
means that the whole unbounded interval (�1; 1] is a chaotic attractor (whose robustness will be proved in
Sec.4).

De�nition 1 (Baker-like). A function � : [0; 1] �! [0; 1] de�ned by

�(x) =

8>>>>>>>><>>>>>>>>:

�1(x) if �1 � x � �0
�2(x) if �2 � x < �1
...

...
�i(x) if �i � x < �i�1
...

...
0 if x = 0

is called a 1D Baker-like map with in�nitely many discontinuouty points in I = [0; 1] if the f�ig1i=0 � I
constitute a decreasing sequence of positive numbers with �0 = 1 such that lim

i!1
�i = 0 and �i a family of

di¤erentiable functions
�i : [�i; �i�1] �! [0; 1] ; for any i � 1

satisfying �i(�i) = 0 for any i � 1, �i(�i�1) = 1 for any i > 1, 0 � �1(1) � 1, and �0i(x) > 1 for any
x 2 [�i; �i�1] :
In the following lemma, we prove that any open interval in I has an image of �nite rank which includes

at least one discontinuity point.

Lemma 1. Let � be a 1D Baker-like map with in�nitely many discontinuity points in I = [0; 1]. Then
for any interval J = (�; �) � I, there is k � 0 such that

�k(J) \ f�i j i 2 Ng 6= ?.

Proof. Reasoning by contradiction, suppose that there is an interval J = (�; �) � I such that

�k(J) \ f�i j i 2 Ng = ?
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for any k � 0. For k = 0; J does not include any discontinuity point, so there is i0 � 1 such that
J � (�i0 ; �i0�1) and �(J) is an interval. Since � is continuous and increasing on J , by the mean value
theorem there is c1 2 J such that

j�(J)j = j�(�)� �(�)j = �1(� � �) = �1 jJ j

where �0(c1) = �1 > 1. Now consider k = 1, then there exists i1 � 1, such that �(J) � (�i1 ; �i1�1) and �2(J)
is an interval. Similarly there is c2 2 �(J) such that���2(J)�� = �2 j�(J)j = �1�2 jJ j
where (�2(c2))

0
= �2 > 1. So iteratively, for k = n there is in � 1 such that �n(J) � (�in ; �in�1) and

�n+1(J) is an interval. Likewise, there is cn 2 �n(J) satisfying���n+1(J)�� = �n j�n(J)j = (�1�2 � � ��n) jJ j
where (�n+1(cn))0 = �n > 1. Since �i > 1, we have

lim
n!+1

���n+1(J)�� = +1
which is a contradiction.�
We prove that a 1D Baker-like map with in�nitely many discontinuity points is chaotic in the sense of

Devaney [7] in I = [0; 1] : Let us recall the following

De�nition 2 (chaos). Let (X; d) be a metric space without isolated points. Then a dynamical system
� : X �! X is said to be chaotic (in the sense of Devaney) if it satis�es the following conditions:
(1) transitivity: � is topologically transitive in X; that is, for any pair of non-empty open sets U and

V of X there exists a natural number n such that �n(U) \ V 6= ?;
(2) density: the periodic points of � are dense in X;
(3) sensitivity: � has sensitive dependence on initial conditions in X; that is, there is a positive constant

� (sensitivity constant) such that for every point x of X and every neighborhood N of x there exists a point
y in N and a non negative integer n such that d(�n(x); �n(y)) � �.
If � is continuous, one can drop the sensitivity condition from Devaney�s de�nition of chaos because it

is implied by the other two conditions ([4]). Moreover, it has been proved that if � is a continuous map on
an interval, not necesserily a �nite interval, then transitivity implies density and sensitivity ([25]). Namely,
for continuous maps on an interval, both sensitivity and density are redundant conditions in the de�nition
of chaos. However, for the 1D discontinuous maps which we are interested in, the three conditions have to
be proved separately.

Theorem 1. Let � be a 1D Baker-like map with in�nitely many discontinuouty points in I = [0; 1].
Then, � is chaotic in I = [0; 1].

Proof. We show that � satis�es the conditions in De�nition 2 (transitivity, density and sensitivity).
(1) First we prove transitivity. Let J = (�; �) � I be an arbitrary open interval. According to Lemma

1, let k0 be the smallest positive integer such that �k0(J) \ f�i j i 2 Ng 6= ?. So, there is at least one
discontinuity point, say �j 2 �k0(J) \ f�i j i 2 Ng. We know that �j is continuous and increasing on
[�j ; �j�1) and �j(�j) = 0. Since �j 2 �k0(J), we have that 0 = �(�j) 2 �k0+1(J). Since 0 is limit set of the
discontinuity points, there exists n0 such that �n 2 �k0+1(J) for any n � n0. Hence [�n; �n�1] � �k0+1(J).
Now by applying � on both sides, we obtain [0; 1) = �([�n; �n�1]) � �k0+2(J). So it is topologically mixing,
and therefore topologically transitive.
(2) Regarding density, let J = (�; �) � I be an arbitrary interval. By Lemma 1, let k0 be the smallest

positive integer such that �k0(J)\ f�i j i 2 Ng 6= ?. We know that �k0(J) =
�
�k0(�); �k0(�)

�
is an interval.

Let �j be the largest discontinuouty point in �k0(J). Note that �k0 is continuous and increasing on J and
�j 2 �k0(J). So there exists x0 2 J , such that �k0(x0) = �j and [x0; �) � J . Since �k0+1(x0) = �(�k0(x0)) =
�(�j) = 0 and 0 is limit set of the discontinuity points, there is n0 such that �n 2 �k0+1([x0; �)) for any
n � n0. It follows that [�n; �n�1] � �k0+1([x0; �)). Thus there are x1 2 [x0; �) such that �k0+1(x1) = �n
and also y1 2 [x0; �) satisfying �k0+1(y1) = �n�1. Clearly, [x1; y1] � [x0; �) and �k0+2([x1; y1)) = [0; 1).
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Since [x1; y1) � [0; 1), let c = y1+1
2 . It is clear that y1 < c < 1. Moreover, there is d 2 [x1; y1) such that

�k0+2(d) = c. Now we de�ne a new map

g : [x1; d] �! [0; c]

such that g(x) := �k0+2(x) � x. Since g is continuous on [x1; d] and g(x1) = 0 � x1 = �x1 < 0 and
g(d) = c � d > 0, by Bolzano�theorem there exists x� 2 [x1; d] � J such that g(x�) = �k0+2(x�) � x� = 0,
that is �k0+2(x�) = x�. This completes the proof.
(3) For the proof of sensitivity, we show that there exists � > 0 such that for any p 2 I and any

neighborhood U of p, there is q 2 U and j � 1 such that d(�j(p); �j(q)) � �. Fix � = 1
2 . According to

the proof of part (i), there is j � 1 such that �j(U) = [0; 1). Let �j(p) = pj 2 I and qj 2 I such that
jqj � pj j = 1

2 . Since qj 2 I, there is q 2 U such that �j(q) = qj and thus

d(�j(p); �j(q)) � �.

�

4 Robust unbounded chaotic attractors

In this section we prove that in the considered example of map f given in (3) there are open sets in the
parameter space at which the dynamics of the system persist as chaotic in the unbounded interval (�1; 1],
showing that the �rst return map Fr de�ned in Sec.2 is a Baker-like map with in�nitely many discontinuity
points.
To this purpose, let us recall some features of the bifurcation curves in the parameter space of our map.

Besides the BCB BRLn determined in Sec.2 associated with cycles having symbolic sequence RLn (n � 2;
in the considered range b < �1) it is known that fold bifurcations of basic cycles may occur (see [20], [14]).
A fold bifurcation leads to two merging solutions of the equation FRLn(x) = x; and from (5) this leads to

anb

x
+
1� an+1
1� a = x: (19)

The eigenvalue of a cycle is the �rst derivative of the composite function FRLn(x); thus we have

F
0

RLn(x0) =
�b
x+10

an (20)

where x0 is the periodic point on the R side. Taking into account that at a fold bifurcation two �xed points
are merging in one point denoted x�RLn and that F

0

RLn(x
�
RLn) = 1, from (20) we obtain the condition

x�RLn = (�ban)
1

+1 (21)

By substituting this expression into (19), the equation of the fold bifurcation in the function FRLn (a curve
in the parameter plane (a; b)) is obtained, for any n � 1; given by:

�RLn : b = �
1

an

�
1� an+1
1� a



 + 1

�+1
(22)

It is worth to note that for any n � 1 (and any  > 0; a > 0) the two curves �RLn and BRLn have a point
of tangency, as can be observed in Fig.3 where a few BCB curves BRLn are shown in black and the fold
bifurcation curves �RLn in red, and the points of tangency are marked by black circles. Each codimension-
two point, say (an; bn); satis�es both equations in (22) and (18), thus an can be obtained as the unique
solution of the following equation:

a
1� an
1� a �

�
1� an+1
1� a



1 + 

�+1
= 0 (23)
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and bn = b(an) is obtained from (18) at a = an: The equation in (23) cannot be easily solved analytically.
However, a simpler expression can be obtained. In fact, considering that at the codimension-two point both
bifurcations must occur simultaneously, and since the border collision occurs when the periodic point on the
right side collides with x = 1, we can state that the fold bifurcation point given in (21), x�RLn = (�ban)

1
+1 ;

must be equal to 1, that is, simplifying:
�ban = 1 (24)

By substituting b = � 1
an into (18) we get �

1
an = �

1�an
an�1(1�a) , that is a

1�an
1�a = 1

 and, rearranging:

an+1 � a
�
1 +

1



�
+
1


= 0 (25)

For the BCB curve of the 2�cycle RL (n = 1), occurring at b = �1, the condition in (24) reduces to
a� 1

 = 0; so that the codimension-two point is given by

a1 =
1


(26)

While for n = 2; related to the BCB curve of the 3�cycle RL2, we obtain

a2 =
1

2

�
�1 +

r
1 +

4



�
:

In addition, it follows that increasing n the solutions are decreasing values (i.e. an+1 < an); and all these
values are larger than a �xed value of a which can be obtained from (25) as n!1; leading to

a1 =
1

 + 1
: (27)

So we can state that, for any n > 1, the following inequalities hold:

a1 =
1

 + 1
< an+1 < an < a1 =

1


: (28)

When the parameters belong to the BCB curve BRLn then a periodic point is merging with x = 1, it
holds F

0

RLn(1) = �ban = an 1�an
an�1(1�a) = a

1�an
1�a and

� for a < an we have F
0

RLn(1) < 1 which means that the colliding cycle is stable, and thus the fold
bifurcation curve �RLn (associated with a point in which F

0

RLn = 1) must have been occurred before
at a smaller value of b;

� for a > an we have F
0

RLn(1) > 1 which means that the colliding cycle is unstable, and thus the fold
bifurcation curve (associated with a point in which F

0

RLn = 1) must be virtual (at larger values of a),
below the BCB curve BRLn :

The codimension-two points on a BCB curve separate di¤erent dynamic behaviors. If we consider a point
of a BCB curve BRLn at the right of its codimension-two point (an; bn) it holds that F 0RLn(1) > 1 and the
colliding cycle is unstable.
The case associated with the example in Fig.2a, related to the curve BRL4 ; corresponds to the upper

point in the blue segment marked by an arrow in Fig.3a, while the example in Fig.2b, related to the curve
BRL5 ; corresponds to the lower point. The case shown in the enlargement of Fig.1 corresponds to a point
inside the segment.
For parameters (a; b) 2 BRLn and a � an; the �rst return map consists of in�nitely many branches

FRLj (x), j � n; and all of them, including the rightmost one FRLn(x), have range [0; 1]: Since F 0RLn(1) > 1;
then it must be F 0RLn(x) > 1 for any x 2 [�n+1; 1): Notice that the codimension-two points aj of BRLj (x),
j > n; all are smaller than an which means that at �xed a decreasing b all the BCB curves BRLj (x),
j > n are crossed and at such bifurcation points it holds F 0RLj (1) > 1 for any j > n: This implies that
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Figure 3: Two-dimensional bifurcation diagram in the (a; b) parameter plane. In (a) at  = 0:5; in (b) at
 = 1:5: Regions related to stable cycles of di¤erent periods are shown in color. The periodicity regions of
the maximal cycles RLn are evidenced. The lower boundary (in red) is a fold bifurcation curve �RLn while
the upper boundary (in black) is a BCB curve BRLn . The bifurcation curves �RLn and BRLn are drawn by
using the equations given in (22) and (18), respectively. The codimension two points (an; bn) are marked
with black circles. In (a) a1 = 2

3 , in (b) a1 = 2
5 : The segment in (a) evidenced by the blue arrow is at

a = 0:9.

at (a; b) 2 BRLn also all the other branches, given by FRLj (x), j > n; are expansive. In fact, the slope
is certainly F 0RLj (x) > 1 for x 2 [�j+1; x

�
j+1] where x

�
j+1 is the unstable �xed point of Fr(x), then for

x 2 [x�j+1; �j ] the slope, although decreasing, is larger than 1 as at the considered parameter (a > an) it
cannot cross the value 1 (a branch FRLj (x) of the �rst return map can have points with slope smaller than 1
only if at �xed value of a, decreasing b the fold bifurcation curve �RLj is crossed, which can occur for a < aj
and this cannot occur at the considered parameter).
This proves that the �rst return map is expanding, and thus Fr(x) is a Baker-like map with in�nitely

many branches, at the points (a; b) 2 BRLj (where a � an) for any j � n: But the same result holds not
only at the BCB values. In fact, considering any point (a; b) 2 BRLn with a � an; then for any b � b
it is F 0r(1) > 1 and thus the rightmost branch of Fr(x) has the slope larger than 1 in all its points (due
to monotonicity and concavity), as in the example shown in the enlargement of Fig.1. Then, not only the
rightmost branch, but also all the other (in�nitely many) branches de�ning the �rst return map Fr(x) have
the slope larger than 1 in all the points. In fact, reasoning as above, the related branches all have an unstable
�xed point, with slope larger than 1, and on its right side the slope, although decreasing, cannot cross the
value 1 as this cannot occur for the considered parameter (a > an):
We have so proved that for any �xed  > 0 considering a BCB curve BRLn ; in all the points (a; b) of the

two-dimensional bifurcation diagram with a � an and b � bn the �rst return map Fr(x) is a Baker-like map
with in�nitely many branches (as in the gray region shown in Fig.3a,b). It follows that a wide area in the
parameter space corresponds, for f , to the existence of a robust unbounded chaotic attractor, the interval
(�1; 1].
As we can see from Fig.3, the larger the value of ; the wider is the region in the parameter space with

robust unbounded chaotic attractors.
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5 Conclusions

In this work we have proved the existence of robust full measure unbounded chaotic attractors in a dis-
continuous piecewise smooth one-dimensional map f , linear-hyperbolic, belonging to the family known as
Nordmark�s map. We have shown that the dynamics of the system in the considered parameter range can
be studied by use of a suitable �rst return map, which has been analytically described. This �rst return
map of the interval I = [0; 1] into itself has in�nitely many discontinuity points �j which are accumulating
to x = 0. In Sec.4 we have proved that in the considered parameter space all the branches are de�ned by
expanding functions and have range I except at most the rightmost one, de�ned in a given interval [�n+1; 1],
whose range can be any interval [0; y] with 0 < y � 1: This kind of map has been called Baker-like map with
in�nitely many branches, and in Sec.3 we have proved that it is chaotic in I; proving that in I transitivity
occurs, periodic points are dense and there is sensitivity with respect to the initial conditions. Proving that
the �rst return map is chaotic in I we have proved that (�1; 1] is an unbounded chaotic attractor of map
f which is persistent under parameter perturbation in a set of positive measure of the parameter space.
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