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Abstract

In the present paper, we use a new generalization of the Hukuhara di¤erence and
derivative for fuzzy-valued functions, and we study several properties of the new
concepts in the setting of the LU-parametric representation of fuzzy numbers, as-
sessed both from theoretical and computational points of view.
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1 Introduction

The interest for di¤erentiability of fuzzy-valued functions is increasing in the
recent literature; several generalized fuzzy derivative concepts are studied in
relation with the similar notions in [2], [27], [28].

These new generalized derivatives are motivated by their usefulness in a very
quickly developing area at the intersection of set-valued analysis and fuzzy
sets, namely, the area of fuzzy analysis and fuzzy di¤erential equations, e.g.,
[1], [3], [10], [11], [12], [13], [17], [19], [20], [22], [31].
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The g-di¤erence proposed in [25], [24], [26] has a great advantage over peer
concepts (e.g. [6]), namely that it always exists, and relatively simple expres-
sions allow its calculation.

In [4], based on the fuzzy gH-di¤erence and g-di¤erence, new generalizations
of the di¤erentiability for fuzzy-number-valued functions are de�ned and ana-
lyzed and connections to the ideas of [14], [15], [16] are shown; in particular,
a new, very general fuzzy di¤erentiability concept is de�ned and studied, the
so-called g-derivative, and it is shown that the g-derivative is the most general
among all similar de�nitions. The properties we obtained in [4], show char-
acterization of the new g-di¤erentiability, an interesting minimality property
and some computational results.

In this paper, the LU-parametric representation proposed in [8], [29], [30]
is considered together with the new derivative concepts and we investigate
numerical di¤erentiation algorithms.

The paper is organized as follows; section 2 introduces the fuzzy g-di¤erence
and the g-derivative; in section 3, the LU-parametric representation of fuzzy
numbers and computational procedures are presented; the paper concludes
with section 4, where some examples and computational tools are presented.

2 Generalized fuzzy di¤erence and generalized fuzzy derivative

One of the �rst de�nitions of di¤erence and derivative for set-valued func-
tions was given by Hukuhara [9] (H-di¤erence and H-derivative); it has been
extended to the fuzzy case in [21] and applied to fuzzy di¤erential equations
(FDE) by many authors in several papers (see [6], [10], [11], [12], [19]). But
the H-derivative in FDE su¤ers certain disadvantages (see [2], [24]) related to
the fact that Minkowski addition does not possess an inverse subtraction. On
the other hand, a more general de�nition of subtraction for compact convex
sets, and in particular for compact intervals, has been introduced by several
authors. Markov [14], [15] de�ned a non-standard di¤erence, also called inner-
di¤erence, and extended its use to interval arithmetic and to interval calcu-
lus. In the setting of Hukuhara di¤erence, the interval and fuzzy generalized
Hukuhara di¤erences have been recently examined in [25], [26].

We start with a brief account of these concepts.

LetKnC be the space of nonempty compact and convex sets ofRn. The Hukuhara
H-di¤erence has been introduced as a set C for which A�H B = C () A =
B + C and an important property of �H is that A �H A = f0g 8A 2 KnC
and (A+B)�H B = A, 8A;B 2 KnC . The H-di¤erence is unique, but it does
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not always exist (a necessary condition for A�H B to exist is that A contains
a translate fcg + B of B). A generalization of the Hukuhara di¤erence aims
to overcome this situation. The generalized Hukuhara di¤erence of two sets
A;B 2 KnC (gH-di¤erence for short) is de�ned as follows

A�gH B = C ()

8><>: (a) A = B + C

or (b) B = A+ (�1)C
(1)

We will denote RF the set of fuzzy numbers, i.e. normal, fuzzy convex, upper
semicontinuous and compactly supported fuzzy sets de�ned over the real line.
Fundamental concepts in fuzzy theory are the support, the level-sets (or level-
cuts) and the core of a fuzzy number.

Here, cl(X) denotes the closure of set X.

De�nition 1. Let u 2 RF be a fuzzy number. For � 2]0; 1], the �-level
set of u (or simply the ��cut) is de�ned by [u]� = fxjx 2 R; u(x) � �g
and for � = 0 by the closure of the support [u]0 = clfxjx 2 R; u(x) > 0g.
The core of u is the set of elements of R having membership grade 1, i.e.,
[u]1 = fxjx 2 R; u(x) = 1g.

It is well-known that the level � cuts are "nested", i.e. [u]� � [u]� for � > �:
A fuzzy set u is a fuzzy number if and only if the � � cuts are nonempty
compact intervals of the form [u]� = [u

�
� ; u

+
� ] � R. The "nested" property is

the basis for the LU representation (L for lower, U for upper) (see [7], [29],
[30]).

Proposition 2. A fuzzy number u is completely determined by any pair u =
(u�; u+) of functions u�; u+ : [0; 1] �! R, de�ning the end-points of the
�� cuts, satisfying the three conditions:
(i) u� : � �! u�� 2 R is a bounded monotonic nondecreasing left-continuous
function 8� 2]0; 1] and right-continuous for � = 0;
(ii) u+ : � �! u+� 2 R is a bounded monotonic nonincreasing left-continuous
function 8� 2]0; 1] and right-continuous for � = 0;
(iii) u�1 � u+1 for � = 1, which implies u�� � u+� 8� 2 [0; 1] :

The following result is well known [18]:

Proposition 3. Let fU�j� 2]0; 1]g be a family of real intervals such that the
following three conditions are satis�ed:
1. U� is a nonempty compact interval for all � 2]0; 1];
2. if 0 < � < � � 1 then U� � U�;
3. given any nondecreasing sequence �n 2]0; 1] with lim

n�!1
�n = � > 0 we have
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U� =
1T
n=1
U�n.

Then there exists a unique LU-fuzzy quantity u such that [u]� = U� for all

� 2]0; 1] and [u]0 = cl
 S
�2]0;1]

U�

!
.

We refer to the functions u�(:) and u
+
(:) as the lower and upper branches of u,

respectively. A trapezoidal fuzzy interval, denoted by u = ha; b; c; di ; where
a � b � c � d; has � � cuts [u]� = [a+ �(b� a); d� �(d� c)] ; � 2 [0; 1],
obtaining a triangular fuzzy number if b = c:

The addition u+ v and the scalar multiplication ku are de�ned as having the
level cuts

[u+ v]� = [u]� + [v]� = fx+ yjx 2 [u]�; y 2 [v]�g
[ku]� = k[u]� = fkxjx 2 [u]�g; [0]� = f0g 8� 2 [0; 1]

The subtraction of fuzzy numbers u � v is de�ned as the addition u + (�v)
where �v = (�1)v, but in general u� u 6= 0.

The standard Hukuhara di¤erence (H-di¤erence �H) is de�ned by u �H v =
w () u = v + w; being + the standard fuzzy addition; if u �H v exists, its
�� cuts are [u�H v]� = [u�� � v�� ; u+� � v+� ]: It is well known that u�H u = 0.

The Hausdor¤ distance on RF is de�ned by

D (u; v) = sup
�2[0;1]

n
k[u]� 	gH [v]�k�

o
;

where, for an interval [a; b], the norm is

k[a; b]k� = maxfjaj; jbjg

and it is well known that (RF ; D) is a complete metric space.

De�nition 4. Given two fuzzy numbers u; v 2 RF ; the generalized Hukuhara
di¤erence (gH-di¤erence for short) is the fuzzy number w, if it exists, such
that

u�gH v = w ()

8><>: (i) u = v + w

or (ii) v = u� w
. (2)

It is easy to show that (i) and (ii) are both valid if and only if w is a crisp
number.

The following properties were obtained in [25].

Proposition 5. ([25]) Let u; v 2 RF be two fuzzy numbers; then
i) if the gH-di¤erence exists, it is unique;
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ii) u�gH v = u�H v or u�gH v = �(v�H u) whenever the expressions on the
right exist; in particular, u�gH u = u�H u = 0;
iii) if u�gH v exists in the sense (i), then v�gH u exists in the sense (ii) and
viceversa,
iv) (u+ v)�gH v = u,
v) 0�gH (u�gH v) = v �gH u;
vi) u�gH v = v �gH u = w if and only if w = �w; furthermore, w = 0 if and
only if u = v.

In [25], [26] a new di¤erence between fuzzy numbers was proposed, a di¤erence
that always exists.

De�nition 6. The generalized di¤erence (g-di¤erence for short) of two fuzzy
numbers u; v 2 RF is given by its level sets as

[u	g v]� = cl
[
���
([u]� 	gH [v]�);8� 2 [0; 1]; (3)

where the gH-di¤erence 	gH is with interval operands [u]� and [v]�:

The following propositions give simpli�ed notation for u 	g v (see [4]) and
some properties.

Proposition 7. For any two fuzzy numbers u; v 2 RF the two g-di¤erences
u 	g v and v 	g u exist and, for any � 2 [0; 1], we have u 	g v = �(v 	g u)
with

[u	g v]� = [d�� ; d+� ] and [v 	g u]� = [�d+� ;�d�� ] (4)
where

d�� = inf(D�); d+� = sup(D�)

and the sets D� are
D� = fu�� � v�� j� � �g [ fu+� � v+� j� � �g.

Let us consider the fuzzy inclusion de�ned as u � v () u(x) � v(x) ;8x 2 R
() [u]� � [v]�;8� 2 [0; 1]: The following proposition provides a minimality
property for the g-di¤erence.

Proposition 8. The g-di¤erence u	g v is the smallest fuzzy number w in the
sense of fuzzy inclusion such that

u � v + w and v � u� w;

Proposition 9. Let u; v 2 RF be two fuzzy numbers; then
i) u�g v = u�gH v; whenever the expression on the right exists; in particular
u�g u = 0;
ii) (u+ v)�g v = u,
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iii) 0�g (u�g v) = v �g u;
iv) u �g v = v �g u = w if and only if w = �w; furthermore, w = 0 if and
only if u = v.

The connection between the gH-di¤erence, the g-di¤erence and the Hausdor¤
distance adds a geometric interpretation for the di¤erences constructed.

Proposition 10. We have

D (u; v) = ku�g vk

where k�k = D (�; 0).

Generalized di¤erentiability concepts were �rst considered for interval-valued
functions in the works of Markov ([14], [16]). This line of research is contin-
ued by several papers [2], [5], [27] etc. dealing with interval and fuzzy-valued
functions.

De�nition 11. Let x0 2]a; b[ and h be such that x0 + h 2]a; b[, then the
gH-derivative of a function f :]a; b[! RF at x0 is de�ned as

f 0gH(x0) = lim
h!0

1

h
[f(x0 + h)�gH f(x0)]: (5)

If f 0gH(x0) 2 RF satisfying (5) exists, we say that f is generalized Hukuhara
di¤erentiable (gH-di¤erentiable for short) at x0.

As we have seen in equation (3), both fuzzy gH -di¤erence and g-di¤erence
are based on the interval gH -di¤erence for each �-cut of the involved fuzzy
numbers; this level characterization is obviously inherited by the fuzzy gH -
derivative, with respect to the level-wise gH -derivative.

De�nition 12. Let x0 2]a; b[ and h be such that x0+h 2]a; b[, then the level-
wise gH-derivative (LgH-derivative for short) of a function f :]a; b[! RF at
x0 is de�ned as the set of interval-valued gH-derivatives, if they exist,

f 0LgH(x0)� = lim
h!0

1

h
([f(x0 + h)]� �gH [f(x0)]�) : (6)

If f 0LgH(x0)� is a compact interval for all � 2 [0; 1], we say that f is level-
wise generalized Hukuhara di¤erentiable (LgH-di¤erentiable for short) at x0
and the family of intervals ff 0LgH(x0)�j� 2 [0; 1]g is the LgH-derivative of f
at x0, denoted by f 0LgH(x0).

Theorem 13. Let f :]a; b[! RF be such that [f(x)]� = [f�� (x); f+� (x)]. Sup-
pose that the functions f�� (x) and f

+
� (x) are real-valued functions, di¤eren-

tiable w.r.t. x, uniformly w.r.t. � 2 [0; 1]. Then the function f(x) is gH-
di¤erentiable at a �xed x 2]a; b[ if and only if one of the following two cases
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holds:
a) (f�� )

0
(x) is increasing, (f+� )

0
(x) is decreasing as functions of �; and�

f�1
�0
(x) �

�
f+1
�0
(x), or

b) (f�� )
0
(x) is decreasing, (f+� )

0
(x) is increasing as functions of �; and�

f+1
�0
(x) �

�
f�1
�0
(x).

Also, 8� 2 [0; 1] we have
h
f 0gH(x)

i
�
= [minf

�
f��
�0
(x);

�
f+�
�0
(x)g;maxf

�
f��
�0
(x);

�
f+�
�0
(x)g] (7)

According to Theorem 13, for the de�nition of gH-di¤erentiability when f�� (x)
and f+� (x) are both di¤erentiable, we distinguish two cases, corresponding to
(i) and (ii) of (2).

De�nition 14. Let f : [a; b] �! RF and x0 2]a; b[ with f�� (x) and f+� (x)
both di¤erentiable at x0. We say that
- f is (i)-gH-di¤erentiable at x0 if

(i.)
h
f 0gH(x0)

i
�
= [
�
f��
�0
(x0);

�
f+�
�0
(x0)];8� 2 [0; 1] (8)

- f is (ii)-gH-di¤erentiable at x0 if

(ii.)
h
f 0gH(x0)

i
�
= [
�
f+�
�0
(x0);

�
f��
�0
(x0)];8� 2 [0; 1]: (9)

De�nition 15. Let x0 2]a; b[ and h be such that x0 + h 2]a; b[, then the
g-derivative of a function f :]a; b[! RF at x0 is de�ned as

f 0g(x0) = lim
h!0

1

h
[f(x0 + h)�g f(x0)]: (10)

If f 0g(x0) 2 RF satisfying (10) exists, we say that f is generalized di¤erentiable
(g-di¤erentiable for short) at x0.

The next result provides a �rst expression for the g-derivative and its con-
nection to the interval gH-derivative of the level sets. According to the res-
ult that the existence of the gH-di¤erences for all level sets is su¢ cient to
de�ne the g-di¤erence, the uniform LgH-di¤erentiability is su¢ cient for the
g-di¤erentiability.

Theorem 16. ([4]) Let f :]a; b[! RF be uniformly LgH-di¤erentiable at x0.
Then f is g-di¤erentiable at x0 and, for any � 2 [0; 1],

[f 0g(x0)]� = cl

0@ [
���
f 0LgH(x0)�

1A
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In the following Theorem we give a characterization and a practical formula
for the g-derivative.

Theorem 17. ([4]) Let f : [a; b]! RF be such that [f(x)]� = [f�� (x); f+� (x)].
If f�� (x) and f

+
� (x) are di¤erentiable real-valued functions with respect to x,

uniformly for � 2 [0; 1]; then f(x) is g-di¤erentiable and we have

h
f 0g(x)

i
�
=

"
inf
���

minf
�
f��
�0
(x);

�
f+�
�0
(x)g; sup

���
maxf

�
f��
�0
(x);

�
f+�
�0
(x)g

#
:

(11)

The next Theorem shows a minimality property for the g-derivative ([4]).

Theorem 18. Let f be uniformly LgH-di¤erentiable. Then f 0g(x), for a �xed
x, is the smallest fuzzy number w 2 RF (in the sense of fuzzy inclusion) such
that f 0LgH(x)� � [w]� for all � 2 [0; 1].

We will assume, for the rest of this section, that f�� (x) and f
+
� (x) are di¤er-

entiable w.r.t. x for all �.

De�nition 19. We say that a point x 2]a; b[ is an l-critical point of f if it is
a critical point for the length function len([f(x)]�) = f+� (x)� f�� (x) for some
� 2 [0; 1]:

If f is gH-di¤erentiable everywhere in its domain the switch at every level
should happen at the same time, i.e., d

dx
len([f(x)]�) = (f

+
� (x)� f�� (x))

0
= 0

at the same point x for all � 2 [0; 1] ([4]).

De�nition 20. We say that a point x0 2]a; b[ is a switching point for the
gH-di¤erentiability of f , if in any neighborhood V of x0 there exist points
x1 < x0 < x2 such that
type-I switch point) at x1 (8) holds while (9) does not hold and at x2 (9) holds
and (8) does not hold, or
type-II switch point) at x1 (9) holds while (8) does not hold and at x2 (8)
holds and (9) does not hold.

Obviously, any switching point is also an l-critical point. Indeed, if x0 is a
switching point then [(f�� )

0
(x0); (f

+
� )

0
(x0)] = [(f+� )

0
(x0); (f

�
� )

0
(x0)] and so�

f+0
�0
(x0) =

�
f�0
�0
(x0) and len(f(x0))0 = 0: Clearly, not all l-critical points

are also switching points.

De�nition 21. ([4]) We say that an interval S = [x1; x2] �]a; b[, where f is
g-di¤erentiable, is a transitional region for the di¤erentiability of f , if in any
neighborhood (x1 � �; x2 + �) � S, � > 0, there exist points x1 � � < �1 < x1
and x2 < �2 < x2 + � such that
type-I switch region) at �1 (8) holds while (9) does not hold and at �2 (9) holds

8



and (8) does not hold, or
type-II switch region) at �1 (9) holds while (8) does not hold and at �2 (8)
holds and (9) does not hold.

3 Generalized di¤erentiability with LU-parametric fuzzy numbers

The Lower-Upper (LU) representation of a fuzzy number is a result based
on the well known Negoita-Ralescu representation theorem, stating essentially
that the membership form and the �-cut form of a fuzzy number u are equival-
ent and in particular, the �-cuts [u]� = [u�� ; u

+
� ] uniquely represent u, provided

that the two functions � �! u�� and � �! u+� , w.r.t. �, are left continuous
for all � 2]0; 1], right continuous for � = 0, monotonic (u�� increasing, u

+
�

decreasing) and u�1 � u+1 (for � = 1).

On the other hand, it is well known that monotonic functions have at most a
countable number of points of discontinuity and a countable number of points
where the derivative does not exist.

Denote the corresponding points by the strictly increasing sequence (�j)j2J
with 0 < �j < �j+1 < 1 and J = ; (empty set) or J = f1; 2:::; pg (�nite set)
or J = N (set of natural numbers).

Then the two functions u�� ; u
+
� are di¤erentiable internally to each of the

subintervals [�j�1; �j] i.e., they are formed by a family of di¤erentiable mono-
tonic "pieces", and their restrictions to each subinterval are monotonic and
di¤erentiable.

The LU-parametric representation of fuzzy numbers, proposed in [8], [29], is
shown to have a great application potential. The lower and upper functions
� �! u�� and � �! u+� of a fuzzy number u 2 RF can be expressed in
LU-parametric form as follows.

First, choose a family of "standardized" di¤erentiable and increasing shape
functions p : [0; 1] �! [0; 1], depending on two parameters �0; �1 � 0, such
that
1. p(0) = 0, p(1) = 1,
2. p0(0) = �0, p0(1) = �1 and
3. p(t) is increasing on [0; 1] if and only if �0; �1 � 0.
One of the simplest shape functions is, e.g., the (2,2)-rational spline

prat(t; �0; �1) =
t2 + �0t(1� t)

1 + (�0 + �1 � 2)t(1� t)
. (12)

9



We remark that function prat(t; �0; �1) is linear if �0 = �1 = 1 and is quadratic
if �0+�1 = 2, �0 6= �1; as we will see, this is an interesting fact, because linear
and quadratic shapes are reproduced exactly (without approximation error)
by the simpler LU-parametric form.

The shape functions p(t; �0; �1) are adopted to represent the functions u�(:) and
u+(:) "piecewise" on a decomposition of the interval [0; 1] into N subintervals
0 = �0 < �1 < ::: < �i�1 < �i < ::: < �N = 1; at the extremal points of each
subinterval Ii = [�i�1; �i], the values u�0;i, u

+
0;i, u

�
1;i, u

+
1;i and the �rst derivatives

(slopes) d�0;i, d
+
0;i, d

�
1;i, d

+
1;i of the two functions are then assumed to be given,

i.e.

u��i�1 = u
�
0;i , u

+
�i�1 = u

+
0;i , u

�
�i
= u�1;i , u

+
�i
= u+1;i (13)

(u�)0�i�1 = d
�
0;i , (u

+)0�i�1 = d
+
0;i , (u

�)0�i = d
�
1;i , (u

+)0�i = d
+
1;i (14)

and, for � 2 [�i�1; �i] and i = 1; 2:; ; ; N , we write

u�� = u
�
0;i + (u

�
1;i � u�0;i)p�i

�
t�; �

�
0;i; �

�
1;i

�
(15)

u+� = u
+
0;i + (u

+
1;i � u+0;i)p+i

�
t�; �

+
0;i; �

+
1;i

�
: (16)

where

��j;i =
�i � �i�1
u�1;i � u�0;i

d�j;i and �
+
j;i = �

�i � �i�1
u+1;i � u+0;i

d+j;i for j = 0; 1

and

t� =
�� �i�1
�i � �i�1

; � 2 [�i�1; �i] .

For simplicity, in this presentation we will assume that J = ; (empty set);
otherwise, we can repeat the following results on each of the subintervals.

So, u is assumed to be a fuzzy number with �-cuts [u]� = [u�� ; u
+
� ] and � �!

u�� , � �! u+� monotonic and di¤erentiable w.r.t. �.

For � 2 [0; 1], let �u�� and �u+� denote the �rst derivatives of u�� and u+� w.r.t.
� (for � = 0 they are right derivatives, for � = 1 they are left derivatives).

The following lemma is immediate.

Lemma 22. Two di¤erentiable functions u�� ; u
+
� de�ne a fuzzy number if and
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only if for all � 2 [0; 1] we have8>>>>><>>>>>:
u�1 � u+1

�u�� � 0;8� 2 [0; 1]

�u+� � 0;8� 2 [0; 1]

OR

8>>>>><>>>>>:
u+1 � u�1

�u�� � 0;8� 2 [0; 1]

�u+� � 0;8� 2 [0; 1]

. (17)

A fuzzy number with di¤erentiable lower and upper functions is obtained by
taking u�1;i = u�0;i+1 =: u

�
i , u

+
1;i = u+0;i+1 =: u

+
i and d

�
1;i = d�0;i+1 =: �u

�
i ,

d+1;i = d+0;i+1 =: �u
+
i . This requires 4(N + 1) parameters and we will write

(assuming N � 1)

u = (�i;u
�
i ; �u

�
i ; u

+
i ; �u

+
i )i=0;1;:::;N with (18)

u�0 � u�1 � ::: � u�N � u+N � u+N�1 � ::: � u+0 (19)
�u�i � 0; �u+i � 0, i = 0; 1; :::; N . (20)

The functions u�� and u
+
� are then computed according to (15)-(16).

In general, as illustrated in [8], [29], the fact that the slopes are available
reduces greatly the number of points �i needed to reproduce the functions u��
and u+� on the whole interval � 2 [0; 1].

For simplicity of notation, we will consider only fuzzy numbers in the form
(18) with conditions (19) and (20).

Denote by eFN the set of all LU-parametric fuzzy numbers of the form (18) over
the same uniform decomposition with N subintervals. We can structure eFN by
an addition and a scalar multiplication: let u; v 2 eFN be two LU-parametric
fuzzy numbers

u = (�i;u
�
i ; �u

�
i ; u

+
i ; �u

+
i )i=0;1;:::;N

v = (�i; v
�
i ; �v

�
i ; v

+
i ; �v

+
i )i=0;1;:::;N

then we have

u+ v = (�i;u
�
i + v

�
i ; �u

�
i + �v

�
i ;u

+
i + v

+
i ; �u

+
i + �v

+
i )i=0;1;:::;N

k � u = (�i; ku�i ; k�u�i ; ku+i ; k�u+i )i=0;1;:::;N if k � 0
k � u = (�i; ku+i ; k�u+i ; ku�i ; k�u�i )i=0;1;:::;N if k < 0:

The gH-di¤erence w = u �gH v or the g-di¤erence w = u �g v (we use the
same w for gH-di¤erence and for g-di¤erence, as they are equal if both exist)
in LU-parametric form

w = (�i;w
�
i ; �w

�
i ; w

+
i ; �w

+
i )i=0;1;:::;N

can be determined by simple procedures.
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The �rst procedure computes the gH-di¤erence w = u�gH v, if it exists, and
determines if it is a type (i) (i.e. Hukuhara di¤erence such that u = v+w) or
a type (ii) gH-di¤erence (i.e. v = u� w).

Procedure gHDi¤: Compute gH-di¤erence and its type

Given two fuzzy numbers in LU-parametric form
u = (�i;u

�
i ; �u

�
i ; u

+
i ; �u

+
i )i=0;1;:::;N and v = (�i; v

�
i ; �v

�
i ; v

+
i ; �v

+
i )i=0;1;:::;N

determine if the gH-di¤erence w = u�gH v exists in one of the two forms
(i) or (ii) and, if it exists, computes its LU-parametric form
w = (�i;w

�
i ; �w

�
i ; w

+
i ; �w

+
i )i=0;1;:::;N .

The output variable type is as follows:
type = 1 if type (i) di¤erence exists;
type = 2 if type (ii) di¤erence exists;
type = 0 if gH-di¤erence does not exist.

1. for i = 0; :::; N
2. mi = u

�
i � v�i ; pi = u+i � v+i ; dmi = �u

�
i � �v�i ; dpi = �u+i � �v+i

3. end
4. type = 0
5. if mi � pi, dmi � 0, dpi � 0 for all i = 0; 1; :::; N then type = 1
6. if mi � pi, dmi � 0, dpi � 0 for all i = 0; 1; :::; N then type = 2
7. if type = 1 then
8. w�i = pi, �w

�
i = dpi, w

+
i = mi, �w+i = dmi, i = 0; :::; N

9. end
10. if type = 2 then
11. w�i = mi, �w�i = dmi, w+i = pi, �w

+
i = dpi, i = 0; :::; N

12. end

If conditions (19) and (20) are satis�ed for the output (w�i ; �w
�
i ; w

+
i ; �w

+
i )i=0;1;:::;N

of Procedure gHDi¤, then u �gH v exists and w = u �gH v. Also we observe
that if u; v 2 eFN are two LU-parametric fuzzy numbers

u = (�i;u
�
i ; �u

�
i ; u

+
i ; �u

+
i )i=0;1;:::;N

v = (�i; v
�
i ; �v

�
i ; v

+
i ; �v

+
i )i=0;1;:::;N

and if the gH-di¤erence w = u	gH v exists, then it is an LU-parametric fuzzy
number and it is easy to verify that

w�i = minfu�i � v�i ; u+i � v+i g
w+i = maxfu�i � v�i ; u+i � v+i g;

with associated slopes �w�i ; �w
+
i ; i.e. the procedure described above is correct.

Otherwise, the output (w�i ; �w
�
i ; w

+
i ; �w

+
i )i=0;1;:::;N is to be adjusted to obtain

the g-di¤erence.

12



Procedure gDi¤: Compute g-di¤erence

Given the output type = 0 of procedure gHDi¤
compute the g-di¤erence w = u�gH v in LU-parametric form
w = (�i;w

�
i ; �w

�
i ; w

+
i ; �w

+
i )i=0;1;:::;N .

1. for i = 0; :::; N
2. mi = u

�
i � v�i ; pi = u+i � v+i ;

3. dmi = �u
�
i � �v�i ; dpi = �u+i � �v+i

4. end
5. for i = 0; :::; N
6. if mi = pi
7. w�i = mi, �w�i = max(0; dmi; dpi)
8. w+i = pi, �w

+
i = min(0; dmi; dpi)

9. elseif mi < pi
10. w�i = mi, �w�i = max(0; dmi)
11. w+i = pi, �w

+
i = min(0; dpi)

12. else
13. w�i = pi, �w

�
i = max(0; dpi)

14. w+i = mi, �w+i = min(0; dmi)
15. end
16. end
17. for i = N � 1; :::; 0
18. if w�i � w�i+1 then w�i = w

�
i+1; �w

�
i = 0; �w

�
i+1 = 0

19. if w+i � w+i+1 then w+i = w
+
i+1; �w

+
i = 0; �w

+
i+1 = 0

20. end

From Proposition 7 we obtain immediately that for any two LU-parametric
fuzzy numbers u; v 2 eFN the g-di¤erence w = u 	g v is an LU-parametric
fuzzy number and

w�i = infDi; (21)
w+i = supDi; where
Di = fu�j � v�j jj � ig [ fu+j � v+j jj � ig,

with the corresponding slopes being set to 0 whenever w�i = w�i+1 or w
+
i =

w+i+1; i.e., the algorithm described above is correct.

Let us observe also that if the LU-parametric representation of a fuzzy-valued
function f : [a; b] �! RF is obtained by representing each f(x) 2 RF
as in (18); Lemma 22 is useful to characterize the gH-di¤erentiability of a
fuzzy-valued function f :]a; b[! RF de�ned in terms of its �-cuts [f(x)]� =
[f�� (x); f

+
� (x)].

Based on the results established in [27], [28], when both f�� (x) and f
+
� (x) are

13



di¤erentiable w.r.t. x for all ��s, then the �-cuts of the gH-derivative of f are

f 0gH(x) = [minf(f�� )0(x); (f+� )0(x)g;maxf(f�� )0(x); (f+� )0(x)g]

provided that the two functions (f 0gH(x))
�
� = minf(f�� )0(x); (f+� )0(x)g and

(f 0gH(x))
+
� = maxf(f�� )0(x); (f+� )0(x) de�ne (w.r.t. �) a fuzzy number.

As f�� (x) and f
+
� (x) de�ne the �-cuts of the fuzzy number f(x) for each x,

clearly they are monotonic and almost everywhere di¤erentiable w.r.t. � and
satisfy the conditions of Lemma 22. Assume, for simplicity of presentation,
that each function � �! f�� (x) and � �! f+� (x) is di¤erentiable w.r.t. �.

Notation: We will use the following notations: �f�� (x) =
@
@�
f�� (x), �f

+
� (x) =

@
@�
f+� (x), (f

�
� )

0(x) = @
@x
f�� (x), (f

+
� )

0(x) = @
@x
f�� (x), and, for short, given a

fuzzy valued function f(x), we will denote by �f(x) the pairs of functions
(�f�� (x); �f

+
� (x))�2[0;1]; at � = 0 and � = 1, �f(x) contains the right and

left derivative w.r.t. �.

We will assume that the following equalities hold for the mixed derivatives:

(�f�� )
0(x) =

@

@x

 
@

@�
f�� (x)

!
(22)

=
@

@�

 
@

@x
f�� (x)

!
= �

�
(f�� )

0(x)
�

(�f+� )
0(x) =

@

@x

 
@

@�
f+� (x)

!
(23)

=
@

@�

 
@

@x
f+� (x)

!
= �

�
(f+� )

0(x)
�
.

The following theorem can be proved.

Theorem 23. Let f :]a; b[! RF be de�ned in terms of its �-cuts [f(x)]� =
[f�� (x); f

+
� (x)] satisfying conditions (22)-(23). Then

1. f is (i)-gH-di¤erentiable at x if and only if we have

(i)

8>>>>><>>>>>:
(f�1 )

0(x) � (f+1 )0(x)

(�f�� )
0(x) � 0;8� 2 [0; 1]

(�f+� )
0(x) � 0;8� 2 [0; 1]

14



2. f is (ii)-gH-di¤erentiable at x if and only if

(ii)

8>>>>><>>>>>:
(f+1 )

0(x) � (f�1 )0(x)

(�f�� )
0(x) � 0;8� 2 [0; 1]

(�f+� )
0(x) � 0;8� 2 [0; 1]

PROOF. The proof is obtained by using Lemma 22 to the families of intervals
[(f�� )

0(x); (f+� )
0(x)] for (i); and [(f+� )

0(x); (f�� )
0(x)] for (ii).

Remark 24. A su¢ cient condition for the equality between the mixed partial
derivatives of f�� (x); f

+
� (x) regarded as bivariate functions of x and � is that

these functions are twice continuously di¤erentiable on their domain.

As we have remarked for the rational shape function (12), (monotonic) linear
and quadratic shape functions f�� (x), f

+
� (x) are naturally represented, with

respect to � 2 [0; 1], by the trivial decomposition with only two points 0 =
�0 < �1 = 1 (N = 1) so that the LU-parametrization of linear (or quadratic)
f(x) is

f(x) = (f�0 (x); �f
�
0 (x); f

+
0 (x); �f

+
0 (x); f

�
1 (x); �f

�
1 (x); f

+
1 (x); �f

+
1 (x))

with

f�0 (x) � f�1 (x) � f+1 (x) � f+0 (x) and
�f�i (x) � 0; �f+i (x) � 0, i = 0; 1.

Note that the slopes �f�i (x) and �f
+
i (x) are the derivatives of f

�
� (x) and f

+
� (x)

with respect to � at � = 0 and � = 1.

The (i)-gH-derivative is (we omit here the reference to x)

f 0gH = ((f
�
0 )

0; (�f�0 )
0; (f+0 )

0; (�f+0 )
0; (f�1 )

0; (�f�1 )
0; (f+1 )

0; (�f+1 )
0)

if
(f�0 )

0 � (f�1 )0 � (f+1 )0 � (f+0 )0

(�f�0 )
0 � 0, (�f�1 )0 � 0 and (�f+0 )

0 � 0, (�f+1 )0 � 0:

and the (ii)-gH-derivative is

f 0gH = ((f
+
0 )

0; (�f+0 )
0; (f�0 )

0; (�f�0 )
0; (f+1 )

0; (�f+1 )
0; (f�1 )

0; (�f�1 )
0)

if
(f�0 )

0 � (f�1 )0 � (f+1 )0 � (f+0 )0

(�f�0 )
0 � 0, (�f�1 )0 � 0 and (�f+0 )

0 � 0, (�f+1 )0 � 0:
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In particular, any triangular (or trapezoidal) fuzzy-valued function is such that
�f�0 (x) = �f�1 (x) = f�1 (x) � f�0 (x) and �f+0 (x) = �f+1 (x) = f+1 (x) � f+0 (x)
and the four values f�0 (x) � f�1 (x) � f+1 (x) � f+0 (x) are su¢ cient to fully
de�ne it; in fact, from the identity prat(�; 1; 1) = �, we �nd that equations
(15-16) become

f�� (x) = f
�
0 (x) + �(f

�
1 (x)� f�0 (x)), � 2 [0; 1].

As a consequence, the gH-derivative of a triangular or a trapezoidal fuzzy-
valued function is itself triangular or trapezoidal and its LU-parametric rep-
resentation with the trivial decomposition is exact.

Example 25. Consider the fuzzy valued function f : [�2; 2] ! RF having
triangular values as outputs:

f(x) =

 
x3

3
;
x3

3
+ x+ 3;

2x3

3
+ 4

!
;

its level sets are

f�� (x) =
x3

3
+ �(x+ 3)

f+� (x) = (2� �)
x3

3
+ x� + 4� �;

and �
f��
�0
(x) = x2 + ��

f+�
�0
(x) = (2� �)x2 + �;

the derivatives w.r.t. � are constant in �

�f�� (x) = x+ 3

�f+� (x) = �
x3

3
+ x� 1

and

(�f�� )
0(x) = 1

(�f+� )
0(x) = �x2 + 1.

We observe that on the intervals [�2;�1] and [1; 2] the function is gH-di¤erentiable,
namely it is Hukuhara di¤erentiable. In the interval [�1; 1] it is not gH-
di¤erentiable but it is g-di¤erentiable (see Figs. 1, 2). The level sets in the
�gures are between pairs of curves one blue (lower) and green (upper) with
innermost being the curves that delimit the 1-level set and outermost pair will
be delimiters for the support.
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Figure 1. Level sets of a fuzzy valued function in Example 25

Figure 2. The g-derivative of the function in Example 25

Example 26. Let us consider one more simple example that illustrates the
g-di¤erentiability concept. Let f : [�1; 1]! RF having triangular values

f(x) =
�
0; x2; x2 + 1

�
:

Then the functions giving the endpoints of the level sets are

f�� (x) = �x
2

f+� (x) = (�+ 1)x
2 + 1� �;
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Figure 3. Level sets of a fuzzy valued function in Example 26

having

�
f��
�0
(x) = 2�x�

f+�
�0
(x) = 2(�+ 1)x;

the derivatives w.r.t. � are

�f�� (x) = x
2

�f+� (x) = x
2 � 1

and

(�f�� )
0(x) = 2x

(�f+� )
0(x) = 2x.

We observe that the function is not gH-di¤erentiable but it is g-di¤erentiable
(see Figs. 3, 4).

In the next propositions we analyze the gH-di¤erentiability and the g-di¤erentiability
under the LU-parametric representation.

Proposition 27. Let f : [a; b] �! RF be represented in LU-parametric form

f(x) =
�
�i; f

�
i (x); �f

�
i (x); f

+
i (x); �f

+
i (x)

�
i=0;:::;N

;

assume that for i = 0; 1; :::; N the functions f�i (x); �f
�
i (x); f

+
i (x); �f

+
i (x) are

di¤erentiable at x = x0. Then
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Figure 4. The g-derivative of the function in Example 26

(1) f is (i)-gH-di¤erentiable at x0 if and only if the following is a fuzzy number

w =
�
�i;

�
f�i
�0
(x0);

�
�f�i

�0
(x0);

�
f+i
�0
(x0);

�
�f+i

�0
(x0)

�
i=0;:::;N

; (24)

(2) f is (ii)-gH-di¤erentiable at x0 if and only if the following is a fuzzy number

w =
�
�i;

�
f+i
�0
(x0);

�
�f+i

�0
(x0);

�
f�i
�0
(x0);

�
�f�i

�0
(x0)

�
i=0;:::;N

: (25)

In any case, we have f 0gH(x0) = w.

PROOF. Direct calculation by Theorem 13.

The following proposition is also immediate.

Proposition 28. Let f : [a; b] �! RF be represented in LU-parametric form

f(x) =
�
�i; f

�
i (x); �f

�
i (x); f

+
i (x); �f

+
i (x)

�
i=0;:::;N

;

assume that for i = 0; 1; :::; N the functions f�i (x); �f
�
i (x); f

+
i (x); �f

+
i (x) are

di¤erentiable at x = x0. Then f is g-di¤erentiable at x0 and the fuzzy number
f 0g(x0) has the following LU-parametrization

f 0g(x0) =
�
�i;w

�
i ; �w

�
i ; w

+
i ; �w

+
i

�
i=0;:::;N

,
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where w�i ; �w
�
i ; w

+
i ; �w

+
i are obtained by procedures gHDi¤ and gDi¤ applied

with input data (the derivatives ()0 are with respect to x):

mi = (f
�
i )

0(x0); pi = (f
+
i )

0(x0);

dmi = (�f
�
i )

0(x0); dpi = (�f
+
i )

0(x0).

Remark 29. The last two propositions can be used to determine the type of
a switching point x0, by running procedure gHDi¤ at two points x0 � � and
x0 + � with a su¢ ciently small � > 0. We can have several cases, according
to the output value of parameter type from routine gHDi¤; denoting typeL
and typeR the type of g-derivative at points x0 � � and x0 + �, respectively
(assuming that typeL 6= typeR), we have the following combinations:
- if typeL = 1 and typeR = 2, then x0 is a type-I switch;
- if typeL = 2 and typeR = 1, then x0 is a type-II switch;
- if typeL = 1 and typeR = 0, then x0 is a switch from (i)-gH-di¤erentiability
to g-di¤erentiability;
- if typeL = 2 and typeR = 0, then x0 is a switch from (ii)-gH-di¤erentiability
to g-di¤erentiability;
- if typeL = 0 and typeR = 1, then x0 is a switch from g-di¤erentiability
to (i)-gH-di¤erentiability;
- if typeL = 0 and typeR = 2, then x0 is a switch from g-di¤erentiability
to (ii)-gH-di¤erentiability.
It is also simple to determine the type of transitional region for an interval
[x1; x2] where f is g-di¤erentiable of type 0: we compute typeL at point x1� �
and typeR at point x2+� and we compare typeL with typeR in the appropriate
way.

4 LU-parametric approximation of fuzzy g-derivative

For general fuzzy-valued functions, the LU-parametric form (15-16) can be
used as an approximation tool. As discussed e.g. in [8] and [29], the quality
of the approximation of general fuzzy numbers is increased by re�ning the
decomposition of interval [0; 1] from the trivial f�0 = 0; �1 = 1g with two
points, to f0 = �0 < �1 < ::: < �N = 1g with N + 1 points. In this section
we will illustrate some computational results, to show that the approximation
error reduces very rapidly by increasing the number N of subintervals in the
decomposition.

The fuzzy valued function in the following example has points where it is (i)-
gH di¤erentiable, points where it is (ii)-gH di¤erentiable, and points where it
is g-di¤erentiable (see [4]).
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Consider the fuzzy valued function [f(x)]� = [f�� (x); f
+
� (x)]; x 2 [0; 2�] with

f�� (x) =
x2

40
+
(3�2 � 2�3) sin2(x)

20

f+� (x) =
x2

40
+
(2� 3�2 + 2�3) sin2(x)

20

At x 2 f0; �; 2�g, function f(x) has a crisp value. Observe that the x-
derivatives (f�� )

0(x) and (f+� )
0(x) are cubic functions of � 2 [0; 1] and the

slopes �(f�� )
0(x) and �(f+� )

0(x) are computed easily. The LU-parametric form
of f 0g(x) on a uniform decomposition (N subintervals) �i = i=N , i = 0; 1; :::; N
is obtained by the application of Proposition 28; so, it can be computed as soon
as the four functions (f�� )

0(x), (f+� )
0(x), �(f�� )

0(x) and �(f+� )
0(x) are available

(for each x) at the N + 1 points �i = i=N , i = 0; 1; :::; N . With the LU-form
available, we can �nally approximate the �-cuts of the g-derivative f 0g(x) by
equations (15-16). To see how the approximation improves by increasing N ,
consider the results of Table 1. The average absolute and relative errors are
determined by comparing the exact �-cuts [f 0g(x)]� and the �-cuts [f

0
LU(x)]�

of the approximated g-derivative.

The exact and approximated g-derivatives are computed at P = 201 uniform
points xk 2 [0; 2�] andM = 101 uniform values �j 2 [0; 1]; denote by [z�k;j; z+k;j]
and by [ez�k;j; ez+k;j] the �-cuts [f 0g(xk)]�j and [f 0LU(xk)]�j , respectively. The error
measures reported in Table 1, for di¤erent values of N are the average absolute
error AERdF , the percentage relative mean squared error %RMSE and the
percentage relative mean absolute error %RMAE; they are de�ned, for T
exact valuesXt and approximated fXt, t = 1; :::; T , by the following expressions

AERdF =
1

T

TX
t=1

�
jXt � fXtj

�

%RMSE = 100

vuuut 1
T

TX
t=1

 
Xt � fXt

Xt

!2
,

and

%RMAE = 100
1

T

TX
t=1

�����Xt � fXt

Xt

����� .
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Table 1. Approximation errors for LU-parametric g-di¤erence and di¤erent N

N 1 2 4 8 10 20

AERdF 0:1� 10�2 0:22� 10�3 0:17� 10�4 0:51� 10�5 0:60� 10�6 0:47� 10�9

%RMSE 1:89% 0:42% 0:046% 0:004% 0:002% 0:0002%

%RMAE 1:11% 0:23% 0:019% 0:002% 0:0007% 0:00005%

We see that three �-cuts (N = 2) are su¢ cient for an error less than 1%, and
8 intervals give a relative average error of the order 2

100000
.

5 Conclusions and further work

The g-di¤erentiability introduced by the authors in [4], is a very general de-
rivative concept, being also practically applicable. In this paper, following the
same the research direction, we investigate the LU-parametric representation
of fuzzy numbers in the setting of g-di¤erentiability and show necessary and
su¢ cient conditions for types of generalized fuzzy di¤erentiability (e.g. (i)-
gH-di¤erentiability and (ii)-gH-di¤erentiability). We also present some com-
putational procedures to determine the LU-parametric form of the fuzzy g-
derivative and to establish its type. We conclude that the LU-parametrization
is a promising way to improve computations in terms of speed and approxim-
ation quality.
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