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Abstract

In the present paper, we use a new generalization of the Hukuhara difference and
derivative for fuzzy-valued functions, and we study several properties of the new
concepts in the setting of the LU-parametric representation of fuzzy numbers, as-
sessed both from theoretical and computational points of view.

Key words: Fuzzy-valued function, Generalized Hukuhara differentiability,
Generalized fuzzy derivative, LU-parametric fuzzy number

1 Introduction

The interest for differentiability of fuzzy-valued functions is increasing in the
recent literature; several generalized fuzzy derivative concepts are studied in
relation with the similar notions in [2], [27], [28].

These new generalized derivatives are motivated by their usefulness in a very
quickly developing area at the intersection of set-valued analysis and fuzzy
sets, namely, the area of fuzzy analysis and fuzzy differential equations, e.g.,
[1], (3], [10], [11], [12], [13], [17], [19], [20], [22], [31].
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The g-difference proposed in [25], [24], [26] has a great advantage over peer
concepts (e.g. [6]), namely that it always exists, and relatively simple expres-
sions allow its calculation.

In [4], based on the fuzzy gH-difference and g-difference, new generalizations
of the differentiability for fuzzy-number-valued functions are defined and ana-
lyzed and connections to the ideas of [14], [15], [16] are shown; in particular,
a new, very general fuzzy differentiability concept is defined and studied, the
so-called g-derivative, and it is shown that the g-derivative is the most general
among all similar definitions. The properties we obtained in [4], show char-
acterization of the new g-differentiability, an interesting minimality property
and some computational results.

In this paper, the LU-parametric representation proposed in [8], [29], [30]
is considered together with the new derivative concepts and we investigate
numerical differentiation algorithms.

The paper is organized as follows; section 2 introduces the fuzzy g-difference
and the g-derivative; in section 3, the LU-parametric representation of fuzzy
numbers and computational procedures are presented; the paper concludes
with section 4, where some examples and computational tools are presented.

2 Generalized fuzzy difference and generalized fuzzy derivative

One of the first definitions of difference and derivative for set-valued func-
tions was given by Hukuhara [9] (H-difference and H-derivative); it has been
extended to the fuzzy case in [21] and applied to fuzzy differential equations
(FDE) by many authors in several papers (see [6], [10], [11], [12], [19]). But
the H-derivative in FDE suffers certain disadvantages (see [2], [24]) related to
the fact that Minkowski addition does not possess an inverse subtraction. On
the other hand, a more general definition of subtraction for compact convex
sets, and in particular for compact intervals, has been introduced by several
authors. Markov [14], [15] defined a non-standard difference, also called inner-
difference, and extended its use to interval arithmetic and to interval calcu-
lus. In the setting of Hukuhara difference, the interval and fuzzy generalized
Hukuhara differences have been recently examined in [25], [26].

We start with a brief account of these concepts.

Let K¢ be the space of nonempty compact and convex sets of R”. The Hukuhara
H-difference has been introduced as a set C for which Aoy B =C <— A=
B 4+ C and an important property of Oy is that A ©y A = {0} VA € K%
and (A+ B) oy B = A, VA, B € K. The H-difference is unique, but it does



not always exist (a necessary condition for A ©y B to exist is that A contains
a translate {c} + B of B). A generalization of the Hukuhara difference aims
to overcome this situation. The generalized Hukuhara difference of two sets
A, B € K. (gH-difference for short) is defined as follows

(a) A=B+C
AO,u B=C <= (1)
or (b)) B=A+(-1)C

We will denote R the set of fuzzy numbers, i.e. normal, fuzzy convex, upper
semicontinuous and compactly supported fuzzy sets defined over the real line.
Fundamental concepts in fuzzy theory are the support, the level-sets (or level-
cuts) and the core of a fuzzy number.

Here, cl(X) denotes the closure of set X.

Definition 1. Let v € Rz be a fuzzy number. For a €]0,1], the a-level
set of u (or simply the a—cut) is defined by [u], = {z]z € R u(z) > o}
and for « = 0 by the closure of the support [u]p = cl{z|x € R, u(x) > 0}.
The core of u is the set of elements of R having membership grade 1, i.e.,
[u]y = {z|z € Rju(z) = 1}.

It is well-known that the level — cuts are "nested", i.e. [u], C [u]s for a > f.
A fuzzy set u is a fuzzy number if and only if the a@ — cuts are nonempty
compact intervals of the form [u], = [u,,u}] C R. The "nested" property is

the basis for the LU representation (L for lower, U for upper) (see [7], [29],
[30]).

Proposition 2. A fuzzy number u is completely determined by any pair u =
(u™,u™) of functions u—,u™ : [0,1] — R, defining the end-points of the
o — cuts, satisfying the three conditions:

(i) v~ : o« — u,, € R is a bounded monotonic nondecreasing left-continuous
function Vo €)0, 1] and right-continuous for a = 0;

(i) ut : o — ul € R is a bounded monotonic nonincreasing left-continuous
function Vo €]0, 1] and right-continuous for a = 0;

(iii) uy < ui for a =1, which implies u;, < u} Ya € [0,1].

The following result is well known [18]:

Proposition 3. Let {U,|a €]0, 1]} be a family of real intervals such that the
following three conditions are satisfied:

1. U, is a nonempty compact interval for all a €]0,1];

2.0 <a < <1 thenUs C Uy;

3. given any nondecreasing sequence o, €]0,1] with lim «, = a > 0 we have

n—:oo



Ua - ﬁ Uan'

n=1
Then there exists a unique LU-fuzzy quantity u such that [u], = U, for all
a €]0,1] and [u]y = ¢l ( U U.].

«€]0,1]

We refer to the functions Uy and uz%) as the lower and upper branches of u,
respectively. A trapezoidal fuzzy interval, denoted by u = (a,b, c,d), where
a <b<c<d has o — cuts [u], = [a+a(b—a),d—a(d—c)], a € [0,1],
obtaining a triangular fuzzy number if b = c.

The addition u + v and the scalar multiplication ku are defined as having the
level cuts

[u+v]a = [ua + [Vla = {z + ylz € [u]a, y € [v]a}
[ku)o = klu|o = {kz|x € [u]s}, [0]n = {0} Ya € [0,1]

The subtraction of fuzzy numbers u — v is defined as the addition u + (—v)
where —v = (—1)v, but in general u — u # 0.

The standard Hukuhara difference (H-difference ©p) is defined by v Oy v =
w <= u = v + w, being + the standard fuzzy addition; if u Oy v exists, its
a —cuts are [u©g v, = [u, —v,,ut —vl]. It is well known that u © g u = 0.

« o) o

The Hausdorff distance on R£ is defined by

D (u,0) = sup {|[[ula Sgn [v]all,}

a€gl0,1]
where, for an interval [a, b], the norm is
lla, ][l = max{]al, |b[}
and it is well known that (Rz, D) is a complete metric space.

Definition 4. Given two fuzzy numbers u, v € Rz, the generalized Hukuhara
difference (gH-difference for short) is the fuzzy number w, if it exists, such
that

1) u=v+4+w
UOg V=W () . (2)
or (i) v=u—w

It is easy to show that (i) and (ii) are both valid if and only if w is a crisp
number.

The following properties were obtained in [25].

Proposition 5. (/25]) Let u,v € Rz be two fuzzy numbers; then
i) if the gH-difference exists, it is unique;



i) UO g v =uOpv oruQyy v = —(vOpy u) whenever the expressions on the
right exist; in particular, w Ogg u = u Oy u = 0,

iii) if u©Ogp v exists in the sense (i), then v Oy u exists in the sense (i) and
viceversa,

i) (u+v) Ogy v =u,

v) 0Oy (U Ogn v) = v Oy u,

Vi) u Qg v =0 Oy u=w if and only if w = —w; furthermore, w = 0 if and
only if u = .

In [25], [26] a new difference between fuzzy numbers was proposed, a difference
that always exists.

Definition 6. The generalized difference (g-difference for short) of two fuzzy
numbers u,v € Rz is given by its level sets as

[ =c U ﬁ egH ),VO& € [Oa 1]’ (3)

B>«

where the gH-difference &,y is with interval operands [u]s and [v]s.

The following propositions give simplified notation for u &, v (see [4]) and
some properties.

Proposition 7. For any two fuzzy numbers u,v € Rz the two g-differences

u S, v and v 6,4 u exist and, for any o € [0,1], we have u 6, v = —(v S, u)
with
[t S v]a = [dy, d3] and [v S ula = [—dy, —d,] (4)
where

d, =inf(D,), db =sup(D,)

«

and the sets D, are
Dy = {u; —v518 > a} U {uf —vf|5 > a}.

Let us consider the fuzzy inclusion defined asu C v <= u(z) < wv(z),Vz € R
< [u], C [v]a, Vo € [0, 1]. The following proposition provides a minimality
property for the g-difference.

Proposition 8. The g-difference u©4v is the smallest fuzzy number w in the
sense of fuzzy inclusion such that

uCv+w andv Cu— w;

Proposition 9. Let u,v € Rg be two fuzzy numbers; then

i) u @40 =uOyy v, whenever the expression on the right exists; in particular
uOQgu =0,

ii) (u+v) O4v =u,



iii) 00, (u Oy v) = v Oy u,
W) uOyv =v0,u=w if and only if w = —w; furthermore, w = 0 if and
only if u=.

The connection between the gH-difference, the g-difference and the Hausdorff
distance adds a geometric interpretation for the differences constructed.

Proposition 10. We have
D (u,v) = |[u©, v
where ||-|| = D (-,0).

Generalized differentiability concepts were first considered for interval-valued
functions in the works of Markov ([14], [16]). This line of research is contin-
ued by several papers [2], [5], [27] etc. dealing with interval and fuzzy-valued
functions.

Definition 11. Let x¢ €la,b] and h be such that xo + h €]a,b], then the
gH-derivative of a function f :la,b|— Rx at xq is defined as

o1
Fy0) = im0 + ) O (o)) (5)
If fou(wo) € Ry satisfying (5) exists, we say that f is generalized Hukuhara
differentiable (gH-differentiable for short) at xg.

As we have seen in equation (3), both fuzzy gH-difference and g-difference
are based on the interval gH-difference for each a-cut of the involved fuzzy
numbers; this level characterization is obviously inherited by the fuzzy gH-
derivative, with respect to the level-wise gH-derivative.

Definition 12. Let zo €]a,b| and h be such that xo+ h €]a, b, then the level-
wise gH-derivative (LgH-derivative for short) of a function f :la,b[— Rz at
xo 15 defined as the set of interval-valued gH-derivatives, if they exist,

fron(T0)a = }L{%; (Lf (o + ), Ogrr [f (0)l4) - (6)

If fryu(%0)a is a compact interval for all a € [0,1], we say that f is level-
wise generalized Hukuhara differentiable (LgH-differentiable for short) at xq
and the family of intervals { f1, 5 (z0)ala € [0,1]} is the LgH-derivative of f
at o, denoted by f1,g (o).

Theorem 13. Let f :]Ja,b[— Rz be such that [f(x)], = [f, (x), fI(z)]. Sup-
pose that the functions f, (z) and fI(x) are real-valued functions, differen-
tiable w.r.t. x, uniformly w.r.t. « € [0,1]. Then the function f(x) is gH-
differentiable at a fived x €la,b] if and only if one of the following two cases



holds:
W) (f;)
(fr) @
) ()
(/) (@)

Also, Vo

~—

is mcreasmg, (f) (z) is decreasing as functions of o, and

)(),07’

is decreasmg, (fH) (@) is increasing as functions of o, and

i) (@)

[0, 1] we have

IN

Xz

~—

MmIA

[fra(@)] = min{(£2) (@), (£) @} max{(£2) @), (£) @} (@)

According to Theorem 13, for the definition of gH-differentiability when f, (x)
and f(z) are both differentiable, we distinguish two cases, corresponding to

(i) and (ii) of (2).

Definition 14. Let f : [a,b] — Rz and xy €]a,b] with f, (x) and fI(z)
both differentiable at xo. We say that
- f is (i)-gH-differentiable at xo if

i) [futeo)] =1(£2) (o), (£) (w0l Yo € [0,1] (8)

- f is (ii)-gH-differentiable at xo if

(i) [fuo)] =1(£) @o). (£2) (xo)].¥a € [0,1]. (9)

Definition 15. Let x¢ €la,b[ and h be such that xo + h €]a,b], then the
g-derivative of a function f :]a,b[— Rx at xq is defined as

fyleo) = ima £z + ) Oy F(wo)]. (10)

If fi(wo) € Ry satisfying (10) exists, we say that f is generalized differentiable
(g-differentiable for short) at xy.

The next result provides a first expression for the g-derivative and its con-
nection to the interval gH-derivative of the level sets. According to the res-
ult that the existence of the gH-differences for all level sets is sufficient to
define the g-difference, the uniform LgH-differentiability is sufficient for the
g-differentiability.

Theorem 16. ([4]) Let f :|a,b|— Rz be uniformly LgH-differentiable at xy.
Then f is g-differentiable at o and, for any o € [0, 1],

[fo(0)]a = e ( U figH(fro)ﬂ)

B>a



In the following Theorem we give a characterization and a practical formula
for the g-derivative.

Theorem 17. ([{]) Let f : [a,b] — Rz be such that [f(2)], = [f5 (x), f.F(x)].
If f7(z) and f1(z) are differentiable real-valued functions with respect to x,
uniformly for a € [0,1], then f(z) is g-differentiable and we have

3], = |t min (75 00, (1) @) supmax((75) 01, (1) ().
) ()

The next Theorem shows a minimality property for the g-derivative ([4]).

Theorem 18. Let f be uniformly LgH-differentiable. Then f,(z), for a fived
x, is the smallest fuzzy number w € Rx (in the sense of fuzzy inclusion) such
that f1,u()a C [w], for all a € [0,1].

We will assume, for the rest of this section, that f; (z) and f(z) are differ-
entiable w.r.t. z for all a.

Definition 19. We say that a point x €|a, b| is an l-critical point of f if it is
a critical point for the length function len([f(z)]o) = fi(z) — f (x) for some
a € [0,1].

If f is gH-differentiable everywhere in its domain the switch at every level
should happen at the same time, i.e., Lien([f(z)]a) = (fF(2) — f5 (2)) =0
at the same point x for all « € [0,1] ([4]).

Definition 20. We say that a point xo €la,b| is a switching point for the
gH-differentiability of f, if in any neighborhood V of xq there exist points
T < X9 < Ty such that

type-1 switch point) at x1 (8) holds while (9) does not hold and at x4 (9) holds
and (8) does not hold, or

type-1I switch point) at x1 (9) holds while (8) does not hold and at xs (8)
holds and (9) does not hold.

Obviously, any switching point is also an [-critical point. Indeed, if z( is a

switching point then [(f;)" (o), (f3) (z0)] = [(f3) (w0), (fs)' (x0)] and so
!/ /

(fdr) (xo) = (fO’) (o) and len(f(zo))" = 0. Clearly, not all [-critical points

are also switching points.

Definition 21. ([4]) We say that an interval S = [x1,x2] Cla,b[, where f is
g-differentiable, is a transitional region for the differentiability of f, if in any
neighborhood (x1 — 0,9 +6) D S, 0 > 0, there exist points 1 — 0 < & < 11
and To < & < xo + 6 such that

type-1 switch region) at & (8) holds while (9) does not hold and at & (9) holds



and (8) does not hold, or
type-1I switch region) at & (9) holds while (8) does not hold and at & (8)
holds and (9) does not hold.

3 Generalized differentiability with LU-parametric fuzzy numbers

The Lower-Upper (LU) representation of a fuzzy number is a result based
on the well known Negoita-Ralescu representation theorem, stating essentially
that the membership form and the a-cut form of a fuzzy number u are equival-
ent and in particular, the a-cuts [u], = [u, u}] uniquely represent u, provided
that the two functions @ — u, and o — u}, w.r.t. «, are left continuous
for all a €]0,1], right continuous for « = 0, monotonic (u, increasing, u}
decreasing) and u; < uf (for a = 1).

On the other hand, it is well known that monotonic functions have at most a
countable number of points of discontinuity and a countable number of points
where the derivative does not exist.

Denote the corresponding points by the strictly increasing sequence (a;);cs
with 0 < o; < aj41 < 1 and J = 0 (empty set) or J = {1,2...,p} (finite set)
or J =N (set of natural numbers).

Then the two functions u,, u} are differentiable internally to each of the
subintervals [a;_1, o] i.e., they are formed by a family of differentiable mono-
tonic "pieces", and their restrictions to each subinterval are monotonic and

differentiable.

The LU-parametric representation of fuzzy numbers, proposed in [8], [29], is
shown to have a great application potential. The lower and upper functions
a — u, and o — u} of a fuzzy number u € Rz can be expressed in
LU-parametric form as follows.

First, choose a family of "standardized" differentiable and increasing shape
functions p : [0,1] — [0, 1], depending on two parameters [y, 3; > 0, such
that

L p(0)=0,p1) =1,

2. p/(O) = 60, p/(l) = 51 and

3. p(t) is increasing on [0, 1] if and only if 3y, 51 > 0.

One of the simplest shape functions is, e.g., the (2,2)-rational spline

2 + Bot(1 —t)
(Bo+ B —2)t(1—t)

prat(t; 60761) = 1+ (12)



We remark that function p,(t; 5o, £1) is linear if By = 51 = 1 and is quadratic
if 5o+ 51 = 2, By # [1; as we will see, this is an interesting fact, because linear
and quadratic shapes are reproduced exactly (without approximation error)
by the simpler LU-parametric form.

The shape functions p(t; 5o, £1) are adopted to represent the functions uy and
u(+) "piecewise" on a decomposition of the interval [0, 1] into N subintervals
D=y <a; <..<a_1<aq<..<ay = 1; at the extremal points of each
subinterval I; = [a;_1, ], the values ug, ug;, ui, uf; and the first derivatives
(slopes) d, ;, d(}t o dis dii of the two functions are then assumed to be given,

l1.e.

Ug, , = ua,l ) u;;i—l - uarﬂ ) Ug, = uil ’ u;rz‘ - uil (13)
(u_);i_l = da,i ) (“+)Iai_1 = d&- ) (U_);Z = dl_,i ) <U+);Z = dfi (14)

Uy = g, + (ur; —ug)p; (tai Bos Bry) (15)
+ o+ + + \,+ .+ o+
Uy = Ug,; T+ (uy; — Ug )D; (taa 50,17 511> (16)
where
Loy O — Qg .
/Bj,i = %dj,z and ;,_7, = —%dxz for ] = O, 1
Uy — Uy Uy — Uy
and
o — Q1
ta = , @€ o,y
Q; a1

For simplicity, in this presentation we will assume that J = () (empty set);
otherwise, we can repeat the following results on each of the subintervals.

So, u is assumed to be a fuzzy number with a-cuts [u], = [u,,ul] and o —
u,,, « — u} monotonic and differentiable w.r.t. «.

For a € [0, 1], let du,, and du} denote the first derivatives of u; and ul w.r.t.
a (for a = 0 they are right derivatives, for & = 1 they are left derivatives).

The following lemma is immediate.

Lemma 22. Two differentiable functions u,, ul define a fuzzy number if and

10



only if for all o € [0, 1] we have

uy < uf up <up
du, > 0,Ya € [0,1] OR { 6u;, <0,Va €[0,1] - (17)
dul <0,Ya € 10,1] dul > 0,Va € 0,1]

A fuzzy number with differentiable lower and upper functions is obtained by

T = R Y
taking uy; = wug;1 =t u;, up; = ugq = u; and di; = dgq = ouy,
di; = dg;y1 =: 0u;. This requires 4(N + 1) parameters and we will write

(assuming N > 1)

u= (ov;u;,0u; ,ul, 0u)izo 1. N With (18)
ug <up <. <uy <uf <uf << (19)
du; >0, duf <0,i=0,1,...,N. (20)

The functions u,, and u} are then computed according to (15)-(16).

In general, as illustrated in [8], [29], the fact that the slopes are available
reduces greatly the number of points a; needed to reproduce the functions
and v on the whole interval « € [0, 1].

For simplicity of notation, we will consider only fuzzy numbers in the form
(18) with conditions (19) and (20).

Denote by Fy the set of all LU-parametric fuzzy numbers of the form (18) over

the same uniform decomposition with N subintervals. We can structure Fy by
an addition and a scalar multiplication: let u,v € Fy be two LU-parametric
fuzzy numbers

(v Su— at St
u = (Oéia U; 75ui ) Uy a(sui )i=0,1,-~7N

_ R E o &
v = (aia U; 5?]1' y Ui s 57}@' )iZO,l,...,N
then we have

u+v = (a;u; +ov;,0u; +ovu + ot dul + 51}?)2-:0717__71\;
k-u= (o ku;, kou; , kul, kou )i—o1..n if k>0
k-u=(ag; k:u;“, k5u;r, ku; , kéu; )izoa,. N ifk<O.

The gH-difference w = u Oy v or the g-difference w = u ©, v (we use the
same w for gH-difference and for g-difference, as they are equal if both exist)
in LU-parametric form

_ - -+ +
w = (g w; , dw; ,w;, dw; )i=0,1,-..,N

can be determined by simple procedures.

11



The first procedure computes the gH-difference w = u Oy v, if it exists, and
determines if it is a type (i) (i.e. Hukuhara difference such that u = v + w) or
a type (ii) gH-difference (i.e. v = u — w).

Procedure gHDIiff: Compute gH-difference and its type

Given two fuzzy numbers in LU-parametric form

u= (s u;, 0u; ul, 0u )izo.. v and v = (ag;v;, 00, , v, 00 )izo 1. N
determine if the gH-difference w = u O,y v exists in one of the two forms
(i) or (ii) and, if it exists, computes its LU-parametric form

w = (ai; w; 5?1)1_, wj_a 6w;_)i=0717m,N'

The output variable type is as follows:

type = 1 if type (i) difference exists;

type = 2 if type (ii) difference exists;

type =0 if gH-difference does not exist.

1. fori=0,...N

2. m; =u; —v;, p;=u — v, dn; = du; — vy, dp; = du; — dv;
3. end

4. type =0

5. if m; <p;, dm; >0, dp; <0 foralli=0,1,...., N then type =1
6. if m; > p;, dm; <0, dp; > 0 forall:=0,1,..., N then type = 2
7. if type = 1 then

8. w; = p;, ow; = dp;, wi =m;, ow =dm;,i=0,..,N

9. end

10. if type = 2 then

11. w; = my, ow; = dm;, wi = p;, dw; =dp;, i =0,....N
12. end

If conditions (19) and (20) are satisfied for the output (w; , dw; , w;", dw; )izo1, N~
of Procedure gHDiff, then u Oyy v exists and w = u Oy v. Also we observe
that if u,v € Fy are two LU-parametric fuzzy numbers

e St ST
u = (aiv U, 75“@' y Uy 75“1’ )i:0,17~~~7N

— o+ S+
i U 5%- )i:O,l,...,N

2 v Y

v = (ag;v;, v
and if the gH-difference w = © Sy v exists, then it is an LU-parametric fuzzy
number and it is easy to verify that

w; = min{u; —v; ,ul — v}

+ _ - -+ +
w;” = max{u; —v;,u; — v},

with associated slopes dw; , dw;, i.e. the procedure described above is correct.
Otherwise, the output (w; , dw; ,w;", dw; );—o1_. v is to be adjusted to obtain

the g-difference.

12



Procedure gDiff: Compute g-difference

Given the output type = 0 of procedure gHDiff
compute the g-difference w = v ©y5 v in LU-parametric form
w = (a;w;, dw; ,w;, 0w )iz, N-

1. fori=0,.. N

2. m; =u; — v, p;=u; — v,

3. dm; = du; — vy, dp; = du; — v

4. end

5. fori=0,...,.N

6. if m; =p;

7. w; =my, dow; = max(0,dm;,dp;)

8. w;” = p;, ow;” = min(0, dm;, dp;)

9. elseif m; < p;

10. w; =m;, ow; = max(0,dm;)

11. w = p;, dw;” = min(0, dp;)

12. else

13. w; = p;, ow; = max(0,dp;)

14. wi = my, dw = min(0, dm;)

15. end

16. end

17. fori=N—1,...0

18. if w; > w;,, then w; = Wi, 0w; =0,0w; ;=0
19. if wl <wf; then  w =w/f, dw =0,0w/, =0
20. end

From Proposition 7 we obtain immediately that for any two LU-parametric
fuzzy numbers u,v € Fy the g-difference w = v ©4 v is an LU-parametric
fuzzy number and

w; = inf D;, (21)

7
+ _
w;” = sup D;, where

D; = {u; —v;|j > i} U{uf —v)|j > i},

with the corresponding slopes being set to 0 whenever w; = w;,; or w; =
w4, i.e., the algorithm described above is correct.

Let us observe also that if the LU-parametric representation of a fuzzy-valued
function f : [a,b] — Rz is obtained by representing each f(z) € Rg
as in (18); Lemma 22 is useful to characterize the gH-differentiability of a
fuzzy-valued function f :]a,b|— Rz defined in terms of its a-cuts [f(z)], =

[fo (), fa (@)]-

Based on the results established in [27], [28], when both f (z) and f(x) are

13



differentiable w.r.t. = for all a’s, then the a-cuts of the gH-derivative of f are

fou (@) = [min{(f3)'(x), (f3)' ()}, max{(fy)'(x), (f)'(x)}]

provided that the two functions (f;y (7)), = min{(f;) (x), (fS) (z)} and
(four(2)E = max{(f7)'(z), (fF)'(z) define (w.r.t. @) a fuzzy number.

As f.(z) and fI(x) define the a-cuts of the fuzzy number f(z) for each z,
clearly they are monotonic and almost everywhere differentiable w.r.t. o and
satisfy the conditions of Lemma 22. Assume, for simplicity of presentation,
that each function o — f7 (z) and o — f(z) is differentiable w.r.t. a.

Notation: We will use the following notations: é f; (z) = 2 f (z), 6 /1 (z) =

gta (@), (f2) (@) = 5 fo (@), (f5)'(z) = 5; /s (x), and, for short, given a
fuzzy valued function f(z), we will denote by d f(z) the pairs of functions
(0f5 (), 0fF(x))acp,); at o = 0 and o = 1, 0 f(x) contains the right and

left derivative w.r.t. o.

We will assume that the following equalities hold for the mixed derivatives:

0170 = 5 (e @) 2
= e (ere@) =5 ()

010 = 5 (@) (23
— e (@) =5 ().

The following theorem can be proved.

Theorem 23. Let f :|a,b[— Rz be defined in terms of its a-cuts [f(z)]o =
[fo (), fH(x)] satisfying conditions (22)-(23). Then
1. f is (i)-gH-differentiable at x if and only if we have

(fr) (@) < (A7) (2)
(1) 3 (6f7)(x) = 0,Ya € [0,1]
(0fa) (x) <0,Va € [0,1]

«
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2. f is (ii)-gH-differentiable at x if and only if

PROOF. The proofis obtained by using Lemma 22 to the families of intervals

(&) (@), (f3) ()] for (i); and [(f3)(x), (f3) ()] for (ii).

Remark 24. A sufficient condition for the equality between the mixed partial
derivatives of f, (x), fI(x) regarded as bivariate functions of  and « is that
these functions are twice continuously differentiable on their domain.

As we have remarked for the rational shape function (12), (monotonic) linear
and quadratic shape functions f (z), f.(z) are naturally represented, with
respect to a € [0, 1], by the trivial decomposition with only two points 0 =
ap < a; =1 (N =1) so that the LU-parametrization of linear (or quadratic)

f(zx) is
fl@) = (fo (@), 05 (@), fi" (@), 0f5 (x); i (2),0f1 (2), fi7 (), 0f1 (2))

with

fo (@) < fi(2) < ff(2) < fo (x) and
§fi(z) >0,8f(x) <0,i=0,1.

Note that the slopes d f; (x) and & f;* () are the derivatives of f, (z) and f ()

with respect to « at « =0 and a = 1.

The (i)-gH-derivative is (we omit here the reference to x)

o = ((Jo) () (f5)'5 (066)s (F)'s (Of0) (D) (67))
if
< (A = ()

(fo) < (fi
0,(0f;7) >0 and (0fy)" <0, (6f;F) <0

(0fo)

and the (ii)-gH-derivative is

Forr = ((f) (O f) (f ) (O ) (A0 (05, (f) 5 (6f0))
if
(o) =) =) =)
(0f5) <0, (0f7) <0 and (6f) >0, (6fF) >0

<
>
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In particular, any triangular (or trapezoidal) fuzzy-valued function is such that
0fo (x) = ofy (z) = fi (z) — fo () and 0fy (x) = 0fi (x) = fi" (x) = fo (2)
and the four values fy (z) < fi (z) < fif(z) < fo(x) are sufficient to fully
define it; in fact, from the identity p,q(a;1,1) = «, we find that equations
(15-16) become

fa (@) = f5 (@) + a(fi (@) = f5 (2)), a € [0,1].

As a consequence, the gH-derivative of a triangular or a trapezoidal fuzzy-
valued function is itself triangular or trapezoidal and its LU-parametric rep-
resentation with the trivial decomposition is exact.

Example 25. Consider the fuzzy valued function f : [-2,2] — Rz having
triangular values as outputs:

3 a3 213
= —, = 3, — +4]:
f(x) <373+x+ gt )
its level sets are
23
foj(af):§+a(x+3)

3
f;r(x):(Q—a)%+xa+4—a;

and
!
(f2) @) =2+a
(£) (@) = @ = a)a® + o
the derivatives w.r.t. o are constant in «

o0f, (z)=x+3
23
5fa+(m):—§+:v—1

and

(0f5) (@) =1
(6f3)(z) = —2® + 1.

We observe that on the intervals [—2, —1] and [1, 2] the function is gH-differentiable,
namely it is Hukuhara differentiable. In the interval [—1,1] it is not gH-
differentiable but it is g-differentiable (see Figs. 1, 2). The level sets in the
figures are between pairs of curves one blue (lower) and green (upper) with
innermost being the curves that delimit the 1-level set and outermost pair will

be delimiters for the support.

16



-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Figure 1. Level sets of a fuzzy valued function in Example 25

Figure 2. The g-derivative of the function in Example 25

Example 26. Let us consider one more simple example that illustrates the
g-differentiability concept. Let f : [—1,1] — Rz having triangular values

f(z) = (O,xQ,xQ + 1) .
Then the functions giving the endpoints of the level sets are

fa (x) = az?
fale) =(a+ 12’ +1—a;
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We observe that the function is not gH-differentiable but it is g-differentiable
(see Figs. 3, 4).

In the next propositions we analyze the gH-differentiability and the g-differentiability
under the LU-parametric representation.

Proposition 27. Let f : [a,b] — Rz be represented in LU-parametric form

f(@) = (oi; £ (@), 01 (@), £ (2),0£ (x))

i=0,...,.N

assume that for i =0,1,...,N the functions f; (z),0f; (x), fi(x),0f(x) are
differentiable at x = xy. Then

18



Figure 4. The g-derivative of the function in Example 26

(1) f is (i)-gH-differentiable at xo if and only if the following is a fuzzy number
w= (o (£7) (@), (667) (o). (57) (@), (667) @) & (20)
(2) f is (ii)-gH-differentiable at zq if and only if the following is a fuzzy number
w= (0 (£7) @o). (0) (@), (£7) @o). (87) (@0) . (29)

In any case, we have fiy (7o) = w.
PROQOF. Direct calculation by Theorem 13.

The following proposition is also immediate.

Proposition 28. Let f : [a,b] — Rz be represented in LU-parametric form
fla) = (eis fi (@), 87 (@), S (@) 07 (@) L,

assume that fori = 0,1, ..., N the functions f (x), §f7 (z), fit(x), £ (z) are

differentiable at © = xo. Then f is g-differentiable at x¢ and the fuzzy number

fo(w0) has the following LU-parametrization

! _ T . Ay *
fo(x0) = (Oéi,wi 0w, Wy, 0w )i:o ..... N’
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where w; , dw; ,w;", dw; are obtained by procedures gHDiff and gDiff applied
with input data (the derivatives ()" are with respect to x):

m; = (f7) (z0), pi = (fi7) (20),
dm; = (0.f7) (o), dpi = (6.f;)' (o).

Remark 29. The last two propositions can be used to determine the type of
a switching point xg, by running procedure gHDIff at two points xg — d and
To + ¢ with a sufficiently small § > 0. We can have several cases, according
to the output value of parameter type from routine gHDiff; denoting typer,
and typegr the type of g-derivative at points o — ¢ and xg + 9§, respectively
(assuming that typey, # typer), we have the following combinations:

- if typer, = 1 and typer = 2, then x is a type-1 switch;

- if typer, = 2 and typer = 1, then z¢ is a type-I1I switch;

- if typer, = 1 and typeg = 0, then xg is a switch from (i)-gH-differentiability
to g-differentiability;

- if type;, = 2 and typer = 0, then x is a switch from (ii)-gH-differentiability
to g-differentiability;

- if typer, = 0 and typer = 1, then z( is a switch from g-differentiability
to (i)-gH-differentiability;

- if typer, = 0 and typer = 2, then z( is a switch from g-differentiability
to (ii)-gH-differentiability.

It is also simple to determine the type of transitional region for an interval
[x1, x5] where f is g-differentiable of type 0: we compute typey, at point x; — 0
and typer at point x5+ d and we compare type;, with typer in the appropriate
way.

4 LU-parametric approximation of fuzzy g-derivative

For general fuzzy-valued functions, the LU-parametric form (15-16) can be
used as an approximation tool. As discussed e.g. in [8] and [29], the quality
of the approximation of general fuzzy numbers is increased by refining the
decomposition of interval [0, 1] from the trivial {oy = 0,y = 1} with two
points, to {0 = ap < oy < ... < ay = 1} with N + 1 points. In this section
we will illustrate some computational results, to show that the approximation
error reduces very rapidly by increasing the number N of subintervals in the
decomposition.

The fuzzy valued function in the following example has points where it is (i)-
gH differentiable, points where it is (ii)-gH differentiable, and points where it
is g-differentiable (see [4]).
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Consider the fuzzy valued function [f(z)], = [f; (z), f.F (z)], = € [0, 27] with

22 (3a? — 2a3)sin?(x)

2 2 3\ o
by 20 (2= 30”4 20°) sin’(2)

At z € {0,7m,2r}, function f(z) has a crisp value. Observe that the z-
derivatives (f,)'(z) and (f})(z) are cubic functions of o € [0,1] and the
slopes d(f,,)'(z) and §(f)'(x) are computed easily. The LU-parametric form
of f;(z) on a uniform decomposition (IV subintervals) a; =i/N,i=0,1,..., N
is obtained by the application of Proposition 28; so, it can be computed as soon
as the four functions (f, ) (z), (fI) (x), (f;) (x) and §(f.}) (z) are available
(for each z) at the N + 1 points o; = ¢/N, i = 0,1,..., N. With the LU-form
available, we can finally approximate the a-cuts of the g-derivative f;(z) by
equations (15-16). To see how the approximation improves by increasing N,
consider the results of Table 1. The average absolute and relative errors are
determined by comparing the exact a-cuts [f)(7)], and the a-cuts [f7;(7)]a
of the approximated g-derivative.

The exact and approximated g-derivatives are computed at P = 201 uniform
points z;, € [0,27] and M = 101 uniform values a; € [0, 1]; denote by [z, 2 ;]
and by [z ;, Z/ ;] the a-cuts [f/(zx)]a, and [f1;(2k)]a,, respectively. The error
measures reported in Table 1, for different values of NV are the average absolute
error AERAF, the percentage relative mean squared error % RM SFE and the
percentage relative mean absolute error %RM AFE; they are defined, for T
exact values X; and approximated X;,t =1, ..., T, by the following expressions

AERAF = }T: (Ix: — X4l

~\ 2

_Xt>

X; — X,

%RMSE = 100 ;Z (Xt

t=1

and

%RMAE =
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Table 1. Approximation errors for LU-parametric g-difference and different NV

N 1 2 4 8 10 20
AERdF || 0.1x1072 0.22x107® 0.17x10"* 0.51x 107° 0.60 x 10" 0.47 x 10~*
%RMSE || 1.89% 0.42% 0.046% 0.004% 0.002% 0.0002%
%RMAE || 1.11% 0.23% 0.019% 0.002% 0.0007% 0.00005%

We see that three a-cuts (N = 2) are sufficient for an error less than 1%, and

. . . 2
8 intervals give a relative average error of the order {55555-

5 Conclusions and further work

The g-differentiability introduced by the authors in [4], is a very general de-
rivative concept, being also practically applicable. In this paper, following the
same the research direction, we investigate the LU-parametric representation
of fuzzy numbers in the setting of g-differentiability and show necessary and
sufficient conditions for types of generalized fuzzy differentiability (e.g. (i)-
gH-differentiability and (ii)-gH-differentiability). We also present some com-
putational procedures to determine the LU-parametric form of the fuzzy g-
derivative and to establish its type. We conclude that the LU-parametrization
is a promising way to improve computations in terms of speed and approxim-
ation quality.
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