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Abstract.

The object of the work is to perform the global analysis of the
Cournot duopoly model with isoelastic demand function and unit costs,
presented in Puu (1991). The bifurcation of the unique Cournot �xed
point is established, which is a resonant case of the Neimark-Shacker bi-
furcation. New properties associated with the introduction of horizontal
branches are evidenced. These properties di¤er signi�cantly when the
constant value is zero or positive and small. The good behavior of the
case with positive constant is proved, leading always to positive trajec-
tories. Also when the Cournot �xed point is unstable, stable cycles of
any period may exist.

Keywords: Cournot duopoly; isoelastic demand function; multista-
bility; border-collision bifurcations.
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1 Introduction

Rand (1978) suggested that Cournot duopolies, if they were character-
ized by reaction functions of upside-down U-shape, might provide for
multiple coexistent Cournot equilibria, and, depending on parameters,
display many of the phenomena known from complex dynamics in other
�elds. Rand, however, supplied no substantial assumptions, based on
economic theory, from which such reaction functions could arise.
Everyone who worked with this knows that it is not easy, because,

except having the assumptions based on generally accepted microeco-
nomics, one would like to be able to solve for the reaction functions
in explicit closed form, be able to calculate the coordinates of Cournot

1Corresponding Author: Department of Economics and Quantitative Methods,
University of Urbino (Italy). e-mail: f.tramontana@univpm.it
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equilibria, and yet �nd some phenomena economically interesting to in-
vestigate. Economic theory abounds of useful assumptions that might
lead to interesting reaction function shapes, but very few allow one to
ful�l the programme of actual closed form derivations.
One of the present authors suggested in 1991 (Puu, 1991) the com-

bination of isoelastic demand, market price and quantity being related
by reciprocity, with constant marginal costs for the competitors; this
allowed one to make the explicit derivations, and resulted in, if not mul-
tiple Cournot equilibria, at least the general shapes that Rand wanted,
producing period doubling bifurcation cascades to chaos. The model has
since then been used in a sizeable number of publications (see the books
by Puu and Sushko, 2002 and Bischi et al., 2009) and several models
were generalized by using adaptive rules or heterogeneous participants
(Kopel, 1996, Puu, 1998, Ahmed et al., 2000, Agiza and Elsadany, 2004,
Puu and Sushko, 2006, Agliari, 2006, Agliari et al., 2006a,b, Angelini et
al., 2009, Tramontana, 2010, to cite a few, and also using chaos control,
as in Matsumoto, 2006, Chen and Chen, 2007).
The isoelastic demand function has its advantages and disadvantages.

The advantages are that it results when the consumers optimize general
utility functions of Cobb-Douglas shape. Consumers then always spend
constant budget shares on each commodity, which provides for the reci-
procity of price and quantity. As further all consumers have demand
functions of the same shape, this provides for one of the few cases where
the aggregation problem is easily solved and a market demand function
of the same shape results.
The disadvantages are that the model is no good for dealing with

monopoly. As price and quantity are reciprocal, the revenue of a mo-
nopolistic �rm would be constant, no matter how much the �rm sells.
On the other hand, any reasonable production cost function increases
with output; so producing nothing is the best choice for lowering costs.
With constant revenue, the obvious best choice is to actually produce
nothing, so avoiding costs, and selling this nothing at an in�nite price.
The solution has no meaning in terms of substance; it is purely for-
mal. Ultimately it results from the unlimited substitution possibilities
inherent in the Cobb-Douglas indi¤erence curves, and so illustrates the
di¢ culty of �nding assumptions that in a reasonable way represent the
phenomena globally. The same problem arises in the case of collusion.
In duopoly the problem does not arise in a direct manner, but it

is there, and this paper is in a way dealing with precisely it. As the
unimodal reaction functions eventually come down to the axes, and as
negative supplies make no sense, a �rst choice is to replace negative
values with a zero branch. Negative supplies would also be related to
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negative pro�ts, and so it is natural to assume that after the reaction
function comes down to the axis the �rm produces nothing. However,
once one axis is hit, the system can end up at the origin where the reac-
tion functions also intersect, i.e., at the collusion state. This is, however,
forbidden by law in most countries. Further, the reaction functions in-
tersect with in�nite slope in the origin, so it is totally unstable, and the
system would be thrown away by any slight disturbance.
Yet, solutions involving the zero branches are there and even become

stable in a weak Milnor sense. This has never been properly investigated,
and the �rst part of the present paper deals with this.
One can also avoid the origin through stipulating that the duopolists

do not actually close down when they cannot make any pro�t, but keep
to some small "epsilon" stand-by output. This assumption was origi-
nally introduced in Puu (1991) to the end of keeping the computer from
sticking to a totally unstable origin in numerical work, but it makes
sense also in terms of substance. The importance of the numerical value
of this "epsilon" stand-by output, has never been investigated, and is
the purpose of the present study in the second part of this paper.
It is worth noting that the resulting reaction functions are piecewise

smooth, and we can apply the arguments of the model here consid-
ered, also to several other models, proposed for example in (Puu and
Sushko, 2002 and Bischi et al., 2009) as well as in many other duopoly
or oligopoly models.
The plan of the work is as follows. In Section 2 we shall recall

the model, considering the case in which the reaction functions are de-
�ne with a zero branch, and the global dynamics associated with these
branches is studied. Clearly they play a role after the �nal bifurcation,
when all the trajectories are mapped into the invariant coordinate axes,
but also before, when the Cournot equilibrium is locally stable. More-
over, the true nature of the bifurcation of the unique Cournot �xed point
is established, which is a resonant case of the Neimark-Shacker bifurca-
tion. Then in Section 3 we shall consider the modi�ed model in which
the zero branch of the reaction functions is changed into a small positive
constant value. This economically plausible change leads to dynamics
which are always positive. The states previously convergent to the axes
now are convergent to some cycle in the positive phase space. As we
shall see, also after the �nal bifurcation the dynamics are convergent to
a unique superstable cycle, whose period may be any integer number,
depending on the parameters and on the small constant value assumed
in the model. Section 4 concludes, noticing that the global analysis
here performed also works for a continuous piecewise-linear model, with
horizontal graphs in the reaction functions, as well as in other duopoly
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models in which the constraint of an horizontal branch is assumed.

2 The basic Cournot model with isoelastic demand
function

Assume, as in Puu (1991), the inverse demand function

p =
1

x+ y
; (1)

where p denotes market price and x; y denote the outputs of the duopolists.
Given the competitors have constant marginal costs, denoted a; b respec-
tively, the pro�ts are

U =
x

x+ y
� ax; (2)

V =
y

x+ y
� by: (3)

Putting the derivatives @U=@x = 0 and @V=@y = 0, and solving for x; y,
one obtains

x0 =

r
y

a
� y; (4)

y0 =

r
x

b
� x; (5)

as the reaction functions. The dash, as usual, represents the next iterate,
i.e., the "best reply" of one competitor given the observed supply of the
other.
Obviously, (4) returns a negative reply x0 if y > 1=a, and (5) a

negative reply y0 if x > 1=b. To avoid this, we put x0 = 0 whenever
y > 1=a, and y0 = 0 whenever x > 1=b. This means reformulating (4)-
(5) as a continuous piecewise smooth map T , T (x; y) = (x0; y0) de�ned
as follows:

x0 = f(y) =

�p
y
a
� y if 0 � y � 1

a

0 if y > 1
a

; (6)

y0 = g(x) =

�p
x
b
� x if x � 1

b

0 if x > 1
b

: (7)

As we know, the intersections of the two reaction functions lead to the
Nash equilibria, and in this basic model by Cournot equilibrium we
indicate the unique one with positive coordinates, given by

C = (x�C ; y
�
C) = (

b

(a+ b)2
;

a

(a+ b)2
) (8)
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There is also the originO = (0; 0) which is a locally unstable equilibrium.
As shown in Bischi et al. (2000), the dynamic behaviors of a duopoly
model can be studied via the one-dimensional map x0 = F (x) = f(g(x))
that in our case is piecewise smooth. An example is shown in Fig. 1a at
parameters�values for which the Counot �xed point is locally stable.
Considering the case there shown, from the existence of two �xed

points of F (x), the locally unstable origin O = (0; 0) and the Cournot
point C = (x�C ; y

�
C) (here locally stable) we know that also a 2�cycle

exists on the coordinate axes, say C2A, given by f(x�C ; 0); (0; y�C)g which
is locally a saddle.

Fig. 1

From the main property of the Cournot models (to have a separate
second iterate function) the basin of attraction of the Counot �xed point
for the two-dimensional map T (x; y) is given by the Cartesian product
BT (x�C ; y�C) = BF (x�C)�BG(y�C) where BF (x�C) is the basin of attraction
of the stable �xed point x�C for the map F (x) and BG(y�C) is the basin of
attraction of the stable �xed point y�C for the map G(y) = g�f(y): In the
case shown in Fig. 1a we have that BF (x�C) is the whole segment ]0; 1=b[
and BG(y�C) is the whole segment ]0; 1=a[: It follows that the basin of
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attraction of the Counot �xed point for the two-dimensional map T (x; y)
is given by the Cartesian product BT (x�C ; y�C) = BF (x�C) � BG(y�C) =
]0; 1=b[�]0; 1=a[ as ahown in Fig. 1b. We can see that all the other
points of the phase plane are mapped on the coordinate axes, either in
the �xed point O or converging to the 2�cycle saddle C2A:
This is not in contradiction with the fact that these cycles are locally

unstable. From a dynamical point of view these cycles (the origin O and
the saddle C2A) are called stable in weak sense or in Milnor sense (see
Milnor, 19852). The reason why these cycles are stable in Milnor sense is
the existence of "zero-branches" in the de�nition of the maps F (x) and
G(y). For the one-dimensional map F (x) all the points in ]1=b;+1[ are
mapped into the origin, and thus also in the one-dimensional case (map
F (x)) the basin of the origin is of positive measure. Similarly for G(y).
The separators between the basin of the proper attracting set (now C)
and those in Milnor sense is given by the lines x = 1

b
and y = 1

a
as long

as the nonlinear graphs of the two reaction functions are included in the
rectangle Q = [0; 1=b]� [0; 1=a]:
The structure of the basins have a �rst change (global bifurcation) as

soon as one of the two reaction functions exits from Q, thus modifying
the structure of the composite maps F (x) or G(y). Let us increase the
parameter b keeping �xed the value of the parameter a (with obvious
changes can be dealt with the symmetric case in which we increase a).
Noticing that the maximum of the function f(y) occurs at ycr = 1

4a
(as

f 0(ycr) = 0) and f(ycr) = ycr, we have that it is also a critical point of

G(y) (here a local minimum) as G0(ycr) = 0 and G(ycr) =
q

1
4ab
� 1

4a
:

Then the minimum of G(y) reaches zero at the same time in which
the function f(y) reaches the value 1

b
: In fact f(ycr) = 1

4a
= 1

b
and

G(ycr) =
q

1
4ab
� 1

4a
= 0 both occur when the parameters satisfyr

b

a
= 2 ; r =

b

a
= 4 (9)

in our example (with a = 0:2) this bifurcation in the basins occurs at
b = 0:8. In fact, after this contact the structure of the basins changes.
An example is shown in Fig. 1c,d at b = 0:9. The function F (x) is
qualitatively the same whileG(y) now has a zero branch (as shown in Fig.
1d). We notice that the Cournot �xed point is still stable, and its basin
of attraction is always given by BT (x�C ; y�C) = BF (x�C) � BG(y�C); where
BF (x�C) is always the whole segment ]0; 1=b[ while BG(y�C) now consists

2a cycle is said stable in Milnor sense if it is locally unstable but its basin of
attraction is of positive measure in the phase space.
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of two disjoint intervals. Now the basin BG(y�C) can be obtained by using
the inverse of the functuion f(y) as follows: BG(y�C) = f�1(BF (x�C)) and
in our case the basin BG(y�C) = f�1(]0; 1=b[) consists of two intervals,
given by f�1(]0; 1=b[) = (]0; y�[[]y+; 1=a[) where

y� = f
�1(1=b) = (

1

2
p
a
� 1
2

r
1

a
� 4
b
)2 (10)

and thus the basin of attraction for the two-dimensional map T in the
phase plane (x; y) is given by

BT (x�C ; y�C)=BF (x�C)� BG(y�C)
= ]0; 1=b[�f]0; y�[[]y+; 1=a[g

Fig. 1d shows the basins of attraction in the phase plane. Besides the
two rectangles of points (in red) converging to the attracting Cournot
point, there are also huge rectangles of points which may be considered
undesired points, as leading to the extinction (the origin O) or leading
to the saddle cycle on the coordinate axses C2A. Now the separators
between the basin of the proper attracting set (C) and those in Milnor
sense is given by the lines x = 1

b
and x = 1

a
as before and the lines

y = y� from the preimages f�1(1=b); as clearly visible in Fig. 1d.
This is the main point, in order to have a model well de�ned in a

wider area of the (x; y) phase plane, we shall modify the basic model, as
we shall see in the next Section.
Let us �rst complete the analysis in the interesting rectangle R =

[0; 1=b]� [0; y�] (or R = [0; x�]� [0; 1=a] in di¤erent parameter settings,
as we shall explain below) of the region Q = [0; 1=b] � [0; 1=a] of the
phase plane, which includes the attracting set of the map T (x). This
part is already known in the literature, however it is suitable to recall
it here, in order to remark that the bifurcation of the Cournot point,
for the two-dimensional map, is not a �ip bifurcation. It is clear that in
some way this bifurcation is associated with a �ip, as in fact for the map
F (x) the Cournot x�coordinate undergoes a �ip bifurcation. However
this is not re�ected in a �ip bifurcation of the map T . In our case, a
�ip-bifurcation of the map F (x) corresponds to a degenerate Neimark-
Sacker bifurcation for T . In fact, the Jacobian matrix of our map T in
the smooth branches, evaluated in the Counot �xed point is given by

J(x�C ; y
�
C) =

���� 0 b�a
2a

a�b
2b

0

���� (11)

and its characteristic polynomial is given by P(�) = �2 +D where the
determinant isD = (a�b)2

4ab
always positive. Thus the eigenvalues are pure
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imaginary. The equilibrium is stable as long as jDj < 1; which occurs as
long as

3� 2
p
2 < r =

b

a
< 3 + 2

p
2 (12)

At the bifurcation value, when jDj = 1; the eigenvalues are �i. Thus
it corresponds to one of the "resonant" cases of the Neimark-Sacker
theorem. However, also in such a degenerate case, a closed invariant
attracting curve � exists after the bifurcation, made up of the saddle-
node connection of a pair of 4�cycles. In fact, let us prove this directly
via the one-dimensional map F (x), for which at the same time a nor-
mal �ip bifurcation occurs, leading to a locally stable 2�cycle fx1; x2g.
As we know (see Bischi et al., 2000), a 2�cycle of F (x), locally sta-
ble, coexisting with the locally unstable Cournot �xed point, leads to
the existence of two unstable 4�cycles C4A and C4B (C4A one on the
coordinate axes and C4B with points in the positive quadrant) plus one
stable 4�cycle C4C with points in the positive quadrant. The 2�cycle al-
ready existing on the coordinate axes, C2A, turns into a repelling node.
All the periodic points listed above belong to the Cartesian product
f0; x1; x�C ; x2g�f0; x1; x�C ; x2g ; as we can see in Fig. 2, where the closed
curve � is also shown, and a portion of the basins of the topological
attractors and the attractors in Milnor sense.

Fig. 2

The transition to chaos for the map F (x) is as usual, via a sequence of
period doubling bifurcations. An example, keeping a �xed and increasing
the parameter b, is shown in Fig. 3, and the whole sequence can be
observed as for the unimodal logistic map up to the last bifurcation,
involving the homoclinic bifurcation of the origin.
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Fig.3

This last bifurcation is illustrated in Fig. 4. As we can see, the map
F (x) has the maximum which ends in the kink point 1=b (and at the
same time notice that the maximum of the function g(x) has a contact
with the immediate basin in the line y = y�). It follows that for higher
values of b almost all the points of the interval ]0; 1=b[ are mapped in
the origin. Noticing that the critical point of the smooth function g(x)
is xcr = 1

4b
(as g0( xcr) = 0) and g(xcr) = xcr, we have that it is also

a critical point of F (x), as F 0(xcr) = 0 and F (xcr) =
q

1
4ab
� 1

4b
: It

follows that the �nal bifurcation of F (x) (and thus of T ) occurs when
F (xcr) =

1
b
which leads to the following condition:r

b

a
= 2:5 ; r =

b

a
= 6:25 (13)

In the case a = 0:2 used in our example we get the �nal bifurcation at
bf = 1:25, which is the value used in Fig.4.
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Fig. 4

It is clear that if we change the parameters in such a way that the
"adimensional" parameter r = b

a
decreases (insted of incresing it as

we have done above) we shall see the roles of the functions exchanged.
That is, the �rst bifurcation of the basins occurs when the function f(x)
has a contact with the rectangle Q and at the same time the bimodal
function F (x) has a contact with zero, and this bifurcation occurs when
the parameters satisfy r

a

b
= 2 ; r =

b

a
=
1

4
(14)

the Neimark-Shaker bifurcations occur at r = 3 � 2
p
2 and the �nal

bifurcation occurs when the function G(y) has a contact with 1
b
at the

following condition: r
a

b
= 2:5 ; r =

b

a
=

1

6:25
(15)

After the �nal bifurcation the model is not so quite representative, as
only a chaotic repellor survives, and almost all the points of the phase
space are mapped into the coordinate axes in a �nite number of steps,
after which the state jumps from one axis to the other one at each
iteration. In the next section we shall analyze a modi�ed model, which
is more suitable in the applied context.

Notice that the feasible dynamics observed up to now also correspond
to the dynamics of the original smooth model, given by:

x0= f(y) =

r
y

a
� y

y0= g(x) =

r
x

b
� x

assuming that the phase space of interest is the rectangle Q = [0; 1=b]�
[0; 1=a]: That is, all the points outside this range have at least one
negative iterate, and thus are considered unfeasible. This model has
a Cournot �xed point which is stable and globally attracting in Q as long
as the composite functions F (x) and G(y) are inside the rectangle Q,
and thus, as we have seen above, only before the �rst bifurcation of the
basins�structure, which holds only in the following range:

1

4
< r =

a

b
< 4 (16)
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Outside this interval, even is we have a locally stable Cournot point, or a
di¤erent periodic or chaotic attractor, we also have states in the rectangle
Q which lead to some cycle on the coordinate axses. The assumption
of a piecewise smooth function as we have assumed in this section, has
the e¤ect to allow also states outside the rectangle Q or inside Q after
the �rst bifurcation of the basins. However, this result is perhaps not
so interesting because the non positive asymptotic states only belong to
the coordinate axes. This aspect will be improved in the next section.
It is also worth to mention that there is a symmetry in the model,

given by T (x; y; a; b) = T (y; x; b; a) leading to a symmetric structure of
the bifurcation curves in the two dimensional parameter plane (a; b);
with respect to the line a = b. This may lead us to reduce of one unit
the number of the parameters, and keeping the unique parameter r = b

a
:

This requires a rescaling in the variables: setting X = bx and Y =
ay we obtain a two dimensional map which only depends on (X;Y ; r),eT (X; Y ) = (X 0; Y 0) (which is clearly topologically conjugated with T )
given by:

X 0 =

�
r(
p
Y � Y ) if 0 � Y � 1

0 if Y > 1
; (17)

Y 0 =

�
1
r
(
p
X �X) if 0 � X � 1

0 if X > 1
: (18)

For a more suitable interpretation of the dynamics in the applied context
we prefer to avoid a rescaling in the state variables, so we keep the map
in its original form with the parameters (a; b), as resulting from the
optimization problem. However, as we shall see, a complete analysis
performed in the next section is better visualized by using the rescaled
map eT .
3 The modi�ed Cournot model.

The undesired features of the basic model considered in the previous
Section are due to the zero value in the reaction functions, and once
that the zero value is get, the iterated states in the duopoly can no
longer abandon the coordinate axes, even if the cycles on the axes are all
locally unstable. Thus a more interesting model, satisfying the intuitive
economic behavior, is that a state variable x or y can become very low,
assuming a �xed low value, say �; after which they can increase again.
For shake of simplicity let us take the same constant low value � for
both competitors. Thus the model we are now considering is the map
T�, T�(x; y) = (x0; y0) de�ned as follows:

x0 = f(y) =

�p
y
a
� y if y � 1

a

� if y > 1
a

; (19)
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y0 = g(x) =

�p
x
b
� x if x � 1

b

� if x > 1
b

: (20)

which is always piecewise smooth, but now discontinuous, with discon-
tinuity lines in x = 1

b
and y = 1

a
: It is clear that the analytical results

of the previous map inside the rectangle Q of the phase space are un-
changed, and work also for the modi�ed model. However, the main fact
is that the zero state can no longer be reached. The one-dimensional
function F (x) = f(g(x)) (with a point of discontinuity in x = 1

b
) has

now the origin which is really a repelling �xed point, while for x > 1
b
the

function takes the constant value F (x) = f(�) say xm = f(�) =
p

�
a
� �

which is the minimum value that can be reached by the iterated points
of the map, inside the existing absorbing interval. As before, as the pa-
rameters (a; b) are changed increasing r the �nal bifurcation occurs when
the maximum value of F reaches 1

b
; that is, when (13) holds. And it is

also immediate to realize that now the �nal bifurcation will not lead the
dynamics to the axes. Instead, all the states exceeding 1

b
are mapped

into xm which will be a periodic point.
Stated in other words, once that the state variable x reaches a low

value, the increasing branch of F (x) issuing from the origin will push the
state to increase again, entering the absorbing interval with minimum
value xm and maximum in the critical value of F (x). It follows that the
trajectories are converging to a cycle di¤erent from the �xed point O,
with positive state variables and superstable. Clearly the period of the
cycle depends on the value of � and on the values of the other parameters.
As an example, let us consider the case at a = 0:2 �xed considered

in the previous section. Now, with the new model T�, and assuming
� = 10�4; the cycles existing for b < 1:25 are exactly the same with the
same coordinates up to the �nal bifurcation, but the basins of attraction
of the attracting cycles are now changed. On the coordinate axes there
are now truly repellors, which are no longer attractors in Milnor sense
(their stable set is a set of zero measure). All the points which we
observed before in the basin of the origin or in the basin of some cycle on
the coordinate axes, are now converging to the attractors in the positive
quadrant of the phase plane.
And after the �nal bifurcation, for b > 1:25; when the dynamics

were previously no longer interesting, we have now that almost all the
trajectories are converging to a superstable cycle, whose period depends
on the parameters�values. An example is shown in Fig.5.
Fig. 5a illustrates a two-dimensional bifurcation diagram in the (a; b)

plane. Di¤erent colors correspond to cycles of di¤erent period of F (x). A
vertical section is shown through a one-dimensional bifurcation diagram
in Fig. 5b, giving the state variable x as a function of the parameter b. At
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b = b� the Cournot point becomes unstable and at b = bf the maximum
of F (x) reaches the value 1=b. Then we can see that the period of the
cycle changes up to a 2�cycle which persists for a wide interval. A
change in the period of the trajectories after the �nal bifurcation in Q
is due to a border collision bifurcation with the discontinuity point.

Fig. 5

We remark that the one-dimensional bifurcation diagram shows the
x�variable as a function of the parameter b, and thus the period there
observable is the period for the one-dimensional map F (x). This does
not correspond to the period of the cycles of the two-dimensional map
because there may be more periodic points with the same projection in
the coordinate axes (indeed this is the characteristic property of maps
like the present one, for which the second iterate has separate variables).
An example of the map at b = 1:6 (> bf) for which the function F (x)
has a 4�cycle, is shown in Fig.5c. For the map T� this 4�cycle leads
to two disjoint attracting 8�cycles (C8B and C8C). The whole posi-
tive phase plane consists of points converging to one or the other of the
8�cycles. The two basins of attraction are shown in Fig.5d. We remark
that the rectangles of the basisn which are visible in Fig.5b are not �nite
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in number, as they are accumulating on the coordinate axes and can be
seen only in enlarged windows (the structure of the basins in piecewise
smooth duopoly games has been described also in Tramontana et al.,
2009).
As already remarked above, the period also depends on the choice

of the parameter �. For example, by using � = 10�5 we get a di¤erent
picture, shown in Fig. 6.

Fig. 6

Fig. 6a illustrates the two-dimensional bifurcation diagram in the (a; b)
parameter plane, while Fig. 6b illustrates a section at a = 0:2 as before.
We can see that the periods are changed and also that in�nitely many
periods can be obtained. In fact, in Fig. 6b we can see that there is
a particular bifurcation in the parameter b : the periods are odd and
increase by two units at some BCBs as b tends to b while after b the
period is even end decreases by two units. This sequence of bifurcations
can be easily explained from the graph of the function F (x). In Fig. 6c
we can see that for b < b the value xm = f(�) is above the preimage of
the Cournot �xed point or, equivalently, its image is below the unstable
Cournot �xed point: F (xm) < x�C : In the example of Fig. 6d, at b =
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1:4 < b the minimum point is periodic of period 9. As b increases the
point F (xm) tends to the �xed point and the period increases because
this periodic points must do more and more turns around the unstable
Cournot point before reaching again the minimum value. Clearly the
period tends to in�nity and at the value b = b we have F (xm) = x�C that
is: the minimum value is preperiodic to the Cournot point. Then for
b > b we have F (xm) > x�C and F (xm) increases, so that the period from
very high tends to decrease (in the example shown in Fig.6d at b = 1:8
the minimum point is periodic of period 6).
In both the examples shown in Fig. 5b and Fig. 6b, at b = b� (given

in (12)) the local bifurcation of the Cournot �xed point occurs while at
b = bf (given in (13)) the �nal bifurcation occurs. The main property
of the map after the �nal bifurcation is that almost all converges to the
existing cycle for the map F (x) which is unique and superstable. In fact,
almost all the points inside the interval ]0; 1=b[ exit from that interval
in a �nite number of steps under F (x) and ultimately take the value
xm which then is periodic of some period. It follows that almost all
the trajectories converge to this cycle, which is superstable, having one
periodic point in a �at branch of F (x) with zero derivative.
An attracting cycle of period p for F (x) corresponds to several co-

existing attracting cycles for the two-dimensional map T�, following the
rules explained in Bischi et al. (2000).
Clearly the whole analysis with obvious changes occurs if the parame-

ters are changed such that r moves in the opposite direction, decreasing.

3.1 Dependence on �:
The examples shown above illustrate that the positive constant value
in the graph of the reaction functions is important in order to have a
representative model. Also evidence that the dependence of the periods
from the value of � is very strong. To better investigate this dependence
let us consider the topologically conjugated model as a function of the
only parameter r = b=a, so that, considering � as a second parameter, we
may plot a two-dimensional bifurcation diagram in the parameter plane
(r; �).
By using the change of coordinates X = bx and Y = ay we obtain

the map eT� which only depends on (X; Y ; r; �); eT�(X; Y ) = (X 0; Y 0) given
by:

X 0 =

�
r(
p
Y � Y ) if 0 � Y � 1

� if Y > 1
; (21)

Y 0 =

�
1
r
(
p
X �X) if 0 � X � 1

� if X > 1
: (22)
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Fig.7 shows the dependence on the constant value �; for � 2 [0; 0:06] in
Fig. 7a, while in the enlarged window � 2 [0; 0:0014]:
At r = r� (given in (12)) the local bifurcation of the Cournot �xed

point occurs. At r = rf (given in (13)) the �nal bifurcation in Q occurs.
In the interval r� < r < rf the bifurcations are those of a one-dimensional
unimodal map, independent on �; and the bifurcations are vertical lines.
The new interesting range is for r > rf : We can see that all the peri-
ods can be detected, in fact, the periodicity regions in the enlargement
follow the structure of the box-within-a box bifurcation of the unimodal
maps (see Mira, 1987), but now applied only to superstable cycles which
change their period via border collision bifurcations. We remark that
the periodicity regions cannot overlap because at �xed parameters, as
we have seen, it is possible to have only one superstable cycle.
It is plain that a graph similar to the one in Fig. 7 can be obtained

also decreasing r.

Fig. 7

4 Conclusions

The well known Cournot duopoly model has been here investigated with
respect to its global properties. Also when the Cournot �xed point is
locally stable or another attracting set exists which lead to interesting
dynamics, there may be states in the phase space which lead to dan-
gerous situations (negative or zero production). The assumption of a
positive minimal quantity in the reaction functions has the e¤ect to en-
large the region in the phase space associated with feasible dynamics,
mainly periodic. Specially in extreme cases, after the �nal bifurcation
for the bounded bynamics in a neighborhood of the Cournot �xed point,
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we have proved the existence of superstable cycles of any period, with
positive quantities periodically changed, which attract almost all the
points in the phase space (i.e. except for a set of zero measure, which
may include a repelling Cantor set of points)
We remark that the results evidenced in the last two sections are not

due to the introduced discontinuity in the shape of the reaction function.
They only depend on the positive horizontal graph of the reaction func-
tions. In fact, the results and comments of the last two sections are still
valid in a continuous piecewise smooth model, in which the kink points
are not assumed at x = 1=b and y = 1=a but are assumed dependent on
the choice of � still keeping continuous the model, as follows:

x0 = f(y) =

�p
y
a
� y if y � py

� if y > py
; (23)

y0 = g(x) =

�p
x
b
� x if x � px

� if x > px
: (24)

where the kink points px and py satisfy the conditions leading to contin-
uous reaction functions:

� =

r
py
a
� py ; � =

r
px
b
� px
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