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Abstract
By using a vector autoregressive model, this paper decomposes la-

bor productivity of the Italian energy sector, into technological and
non technological shocks. We take the innovative approach to use eco-
nomic theory, about long-run impacts of di¤erent shocks, to identify
the empirical model, and to measure the labor productivity response
to each shock, separately. The key identifying restriction is that the
level of productivity is determined in the long-run by shocks to tech-
nology. We �nd that: (1) productivity responds positively to techno-
logical shocks, leading to a transition from one equilibrium to another;
(2) capital accumulation shows a persistent decline in response to a
positive technological shock, revealing that, in energy sector, technol-
ogy and capital stock are substitutes. Yet, non technological shocks
play a minor and transitory role in explaining productivity change.
Results show that shocks that move the productivity at business cycle
frequencies may also a¤ect the dynamics of the energy sector in the
long-run.
JEL codes: C32, O47, Q4,Q43.
Key words: Energy Sector, SVAR, Productivity, Shocks.
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1 Introduction

This paper studies the relationship between labor productivity and tech-
nology advances in energy sector. Measuring the correlation between these
variables requires an appropriate proxy of technological progress. We extract
such a series by controlling for non technological e¤ects in labor productiv-
ity: varying capital accumulation, oil price, interest rates and unemployment.
With respect to the previous literature on productivity change in the energy
sector we take an innovative approach to characterize the dynamic relation-
ship between productivity and technological progress. We attempt to identify
and estimate the components of labor productivity associated to technologi-
cal shocks, on the one hand, and non technological shocks on the other. That
decomposition is carried out using a structural vector autoregressive (SVAR)
model, in which the long run properties of the variables are determined by a
simple neoclassical growth model.
An extensive literature on productivity and technological progress in en-

ergy sector, however, exists. Prior to the 1990s, especially in US, a large
number of contributions have been made to investigate how regulation and
technological advances a¤ected the generation of electricity and the associ-
ated level of productivity. This intensive research has produced a great deal
of empirical evidence which is not yet conclusive. For a good review of the
literature, on methodologies and applications, see Abbott (2005).
Traditionally, the standard procedure is to compute index number of par-

tial or total factor productivity (TFP). Partial productivity measures the
output generated with a given set of inputs. For example, labor productivity
is the ratio of real value added to labor inputs employed in industries. In
turn, TFP is computed decomposing the growth of output per worker into
the contribution of capital per worker and a remaining term, the Solow resid-
ual. This residual is called TFP, and it is interpreted as a measure of the
contribution of the technological progress (Solow, 1957). Kendrick (1961)
was the �rst to assess partial productivity change measurements, using labor
hours and capital stock, in the electricity industry. He estimated, over the
period 1904-1953, a global growth rate of 5.5% of the electricity utilities in
the US. This pioneering contribution has been re�ned in subsequent papers
(Kendrick, 1973; Kendrick and Grossman, 1980).
Later models have, however, questioned about Kendrik�s results. Basi-

cally, the main criticism was that energy sector is a capital intensive industry
with partial productivity depending strongly on technology. This would im-
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ply that empirical research should investigate directly upon the contribution
of technological progress to control the e¤ects of technology change on partial
productivity. Using growth accounting, Cowin, Small and Stevenson (1981),
Nelson and Wohar (1983) and Callan (1991) conducted similar researches
for the US electricity industry. They �nd that over the period 1970-1990
the TFP growth is the main component of labor productivity. Its decelera-
tion (2.3% on average in the 1970s, versus 1.4% in the 1980s) explains the
productivity slowdown recorded in the US electricity industry during that
period.
More recently, alternative approaches have been suggested to estimate

TFP in energy sector. One of this is the data envelopment analysis (DEA)
pioneered by Charnes el al. (1978). DEA is a linear programming technique
which estimates organizational e¢ ciency by measuring the ratio of total in-
puts employed to total output produced for each organization. This ratio is
then compared to others in the sample group to derive an estimate of rela-
tive e¢ ciency (Fare et al. 1983, 1990). A range of works has been conducted
in a number of countries (Whiteman and Bell, 1994). In recent years, this
approach has been used by Abbott (2006). In his work, which uses data of
the Australian electricity supply industry, he shows that the acceleration in
productivity growth after 1990 has been driven by a marked increase in the
level of TFP.
The drawback of these studies is, however, that they give a good indica-

tion of the degree to which there is scope to improve productivity to world�s
best practice, but they do not give any indication of the reasons why the en-
ergy sector has improved its performance over the past decade (Whiteman,
1999). Further, these contributions do not provide any indication of distur-
bances (or shocks) moving energy sector away from some �potential� level
of productivity. Indeed, inputs like labor, capital and technology determine
the level of production per worker in the long-run, but they can �uctuate in
the short-run because of business cycle. As a consequence, caution should
be taken when comparing TFP among countries because di¤erent levels of
productivity, and its variations, can be in�uenced either by the phase of
the cycle, which can be diverse in the di¤erent countries, or by the relative
improvements of e¢ ciency in energy sector.
But, even the most updated literature on productivity in energy sector

fails in exploring this topic in depth (Ang and Zang, 2000; Ang, Liu and
Chung, 2004). For example, the recent paper by Wang (2007), based on a
distance function approach computed using DEA, decomposes energy pro-
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ductivity into several components, with technology as the most important
source of growth, but it does not provide any adding information about the
nature of the shocks a¤ecting the technological progress, and about the pos-
sibility that shocks that move the economy at business cycle frequencies may
also a¤ect the economy in the long-run.
To the contrary, in the present paper we view partial productivity �uc-

tuations in energy sector as arising from mixture of shocks. Our goal is to
disentangle these shocks. We focus on labor productivity. We present an
alternative approach to analyze how labor productivity responds to a large
range of shocks. Further, we ask if the e¤ects of these shocks are transitory
or permanent.

1.1 Aims and scope

In principle, a wide range of changes (shocks) can explain the movement of
productivity in energy sector, including changes in the rate and direction of
technological progress, changes in capital accumulation, changes in incentives
and regulation, �uctuations of the oil price, changes in aggregate demand, or
any combination of these.
This problem of identi�cation may well account for the mixed empirical

results found by several authors on the general relationship between produc-
tivity and technological progress. For example, Hansen and Wright (1992),
Chirinko (1995) and Christiano et al. (2003), Galì (1999, 2004), Galì et
al. (2002) �nd evidence of procyclical productivity to technological improve-
ments in the short run. In turn, Christiano et al. (2001), Smets and Wouters
(2003) and Saltari and Travaglini (2009) �nd evidence which requires a va-
riety of stochastic disturbances to capture the evolution of productivity over
time.
That said, it must be noted that in energy sector new technologies en-

able shifts in the trajectory of productivity in many di¤erent ways. A study
by Carraro et al. (2003) has already shown that research and development,
and learning-by-doing, a¤ect both life and productivity of a technology in
the energy sector. Additionally, Van der Zwaan and Seebregts (2004) have
shown that learning-by-doing rates are highest in the initial stages of en-
ergy technology deployment, declining over time because of saturation and
senescence.
Finally, in recent years, many analyses of the productivity-technology

relationship depart from all previous methodologies. Some recent contribu-
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tions have attempted to incorporate empirical data on technological change
into computational models of energy sector in order to quantify the impact
of technological progress on productivity. Numerical calibration and para-
metrization are the standard methods employed to implement this approach
(Pizzer and Popp, 2008; Fisher-Vanden and Sue Wing, 2008). However, the
drawback to numerical solutions is that it is often di¢ cult to determine why
results come out the way they do, and this disadvantage may tend to obscure
the underlying economics.
Thus, how can the relationship between technological progress and pro-

ductivity be investigated? One of the most fertile areas of contemporary ap-
plied research concerns macro-econometric models where data are assumed to
be consistent with a �exible representation of the economy. This approach is
called vector autoregressive (VAR). In this framework each variable included
in the model is treated symmetrically, and it is modelled as an autoregressive
and distributed-lag process.
In this paper we employ this econometric methodology. More precisely,

our purpose is to identify the shocks which induce movements in labor pro-
ductivity, and to measure the productivity response to each shock separately.
Our approach is similar to the approach taken by Blanchard and Quah (1989)
and Galì (1999). We impose identifying restrictions to decompose labor pro-
ductivity into two structural shocks, at least. The key identifying restriction
underlying our model is that the level of labor productivity is determined
in the long-run by shocks to technology. This assumption does not exclude
that other shocks also account for short-run movements in productivity.
On this basis, we �nd that (1) labor productivity in energy sector re-

sponds positively to technological shocks leading to a transition from one
equilibrium to another; further, (2) capital accumulation shows a persistent
decline in response to a positive technological shock, revealing that, in energy
sector, technology and capital stock are substitutes. Yet, we do not assume
that all �uctuations in labor productivity are attributable to technological
shocks. Speci�cally, non technological shocks can a¤ect permanently capital
accumulation, but play a minor and transitory role in explaining productivity
growth.
The paper is organized as follows. In the next two sections we use eco-

nomic theory about long-run impacts of shocks to identify our empirical
model. Section 4 gives the precise econometric speci�cation. In Section 5 we
present our estimates. Section 6 concludes.
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2 Sources of growth and �uctuations

It is widely accepted that labor productivity is a unit root process. Theoret-
ical models, like Solow growth model, predict a positive correlation between
productivity and technological shock, and the empirical performance of these
models explains the mechanisms through which shocks impact the economy
and are propagated over time. However, if labor productivity is a¤ected
by shocks of di¤erent nature the interpretation of simulations becomes di¢ -
cult. In that case the moving-average representation of productivity is some
combination of the dynamic response of productivity to each shock.
It is helpful for our analysis to classify shocks into two classes each un-

correlated with the other, and to assume that the �rst shock has a long-run
e¤ect on productivity while the other do not. We assume that there are
two types of structural shocks: (1) technological shocks, that is changes in
the technological progress. As discussed above, technological progress a¤ects
labor productivity in the long-run. However, productivity can deviate in the
short-run from its balanced growth path, and these deviations can be induced
by diverse shocks; (2) non technological shocks that is all the other shocks,
impinging on the economy, that can a¤ect labor productivity temporarily
through its e¤ects on capital accumulation and aggregate demand.
We focus on the long-run properties of the model. Basically, according

to the Solow growth model, movements in labor productivity are attributed
to changes in technology and capital accumulation. As we will explain later,
we refer to these changes as technological and non technological shocks. Our
aim is to quantify the role of these shocks in determining the productivity
growth by making minimal and plausible assumptions. We begin our analysis
estimating a restricted VAR model. More precisely, to decompose labor pro-
ductivity into its sources we impose restrictions on the long-run multipliers
of a vector autoregressive model containing the di¤erenced log of real labor
productivity (�y) and the di¤erenced log of real capital stock (�k). This
procedure is known as structural VAR, and use theoretical restrictions to sep-
arate shocks into technological and non technological components (Shapiro
and Watson, 1988; Blanchard and Quah, 1989). Other variables can be
accommodated into the empirical model, but according to the theory they
capture only the short-run evolution of the economy.
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2.1 Neutral and biased technological progress

The e¤ects of technological shocks on labor productivity and capital stock
can be easily explained using a basic version of the Solow model (Stern,
2004).
The model assumes that output Y increases at a decreasing rate as the

amount of capital K employed rises. Since we are interested in the relation-
ship among labor productivity, technological progress and capital accumula-
tion, we suppose a constant size labor force N = �N .
The simplest concept of technological progress is to suppose that it in-

creases the output Y for given inputs, without a¤ecting the way the inputs
interact. Let�s assume that the aggregate production function has the Cobb-
Douglas form and is given by Y � AF (N;K) = A0N�K1��, where A0 is the
initial stock of technology. Output Y is a function of capital K and of labor
N .
This equation can be written in per capita term as y = B0K1��, where

y = Y= �N is a measure of labor productivity, while B0 � A0 �N��1 is a measure
of the technology, given the constant size of �N: The curve of diagram (a) in
�gure 1 shows the relationship between output per worker y and capital K.
Suppose now that the technology variable A is growing, so that A1 � A0 >
0: In this framework, the technological progress � that is, a higher A; or,
correspondingly, a higher value ofB �is �neutral�in the sense that for a given
�N; if input prices were constant, the marginal rate of substitution between
inputs is unchanged, and so is K�. All that happens is that the production
function in per capita term shifts upward; and the steady state moves from
E to E1; rising labor productivity y as well. Nonetheless, the relative income
distribution is unchanged after the technological improvement.
This neutrality assumption may not strike you as plausible. For a more

general production function, Y = F (A;K;N); alternative assumptions would
be that technological progress either (1) decreases the use of capital K with
respect to labor, or (2) rises the use of K with respect to labor: In either
case, given the input prices, technological progress is �biased�. In case (1)
the e¤ects of technological improvements would decrease the optimal K in
the long run. Such progress is, therefore, called capital-saving. In case (2) the
e¤ect would be the rising of the optimal K: Such progress is therefore called
capital-intensive. The diagram (b) in �gure 1 is the graphical counterpart
of the two long-run �biased� equilibria E2 and E3; where K�� < K� and
K��� > K�:
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Figure 1: The e¤ects of technological progress on labor productivity and
capital stock.

The relevance of this result will become clear shortly. In our empirical
estimation we do not impose any a priori restriction about the nature of
the technological progress in energy sector. Hence, the e¤ective correlation
between technology and capital can be positive or negative, depending on the
nature of the technological progress. In particular, suppose that technology
A and capital K are complements. Then, an advance in technology induces
an increase in capital accumulation with respect to labor, and because of
complementarity this change is biased towards capital. Conversely, if A and
K are substitutes an increase in A will lead to a decline inK; and now because
of substitutability this induces a slowdown in capital accumulation (Kumar
and R. Russell, 2002; Acemoglu, 2009).
This framework is clearly only illustrative. More complex productivity

and capital dynamics, such as in Jones (2002), will also satisfy the long-run
properties of the model. This basic model is nevertheless a useful vehicle
to discuss our interpretation of permanent and transitory shocks in energy
sector.
Finally, note that this model has also another basic property. Indepen-
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dently from the nature, neutral or biased, of the technological progress, no
economy can grow in perpetuity merely by accumulating capital, due to the
diminishing returns to capital accumulation. The only cause of continuing
growth is technological progress which rises the labor productivity in the
long-run. In the simple model being examined, technological improvements,
A1 � A0 > 0; shifts the production function upward, and so the long-run
equilibrium of the labor productivity rises.
These properties of the model allow us to decompose labor productivity

into the components arising from technology and from capital input. Labor
productivity is in�uenced by technological progress in the long-run. To the
contrary, capital accumulation does not a¤ect labor productivity in the long-
run because of diminishing returns, but it can be in�uenced by technological
progress as time passes.

3 Identi�cation of shocks

We begin estimating the two variable VAR system

D(L)Zt = �t (1)

where Zt = (�y;�k)
0 and �t is the vector of disturbances. �y is the di¤er-

enced log of real labor productivity, and �k the di¤erenced log of real capital
stock. This (stationary) autoregressive model can be interpreted in terms of
an in�nite-order moving average model of the form

Zt = G(L)�t (2)

where G(L) = D(L)�1: Since the elements of �t are in general contempo-
raneously correlated, we cannot interpret them as structural shocks. We
orthogonalize them by imposing restrictions on the long-run multipliers in
the system.
Our previous assumptions about shocks provide the identifying restric-

tions for the structural VAR. There are two types of structural shocks a¤ect-
ing �y and �k: The �rst shock, namely the technological shock �T , has a
long-run impact on the (log of) labor productivity and capital accumulation.
The second shock, the non technological shock �N , has a long-run e¤ects
on the log of capital accumulation, but it has no long-run a¤ect on labor
productivity. These two restrictions are implied by the Solow growth model.
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Using these restrictions we obtain an alternative representations of Zt
which is called structural VAR (SVAR). Formally, it can be written as

Zt = C(L)�t (3)

where �t =
�
�T ; �N

�0
is now composed by two structural shocks, where �T is

the technological shock, �N is the non technological shock.
Given our identifying restrictions, the matrix of the long run multipliers

C(1) can be written as:

C(1) =

�
C11(1) 0
C21(1) C22(1)

�
(4)

Assuming the shocks are ordered technological and non technological, the
above restrictions says that the secular component in labor productivity
originates in the technological shocks, and the coe¢ cient C11(1) identi�es
the long-run multiplier of this shock. In turn, the zero in matrix (4) implies
that non technological shocks do not a¤ect the log of productivity in the
long-run (however, they may well have short and medium run e¤ects on it),
but that the secular component of the log of capital accumulation depends
on both technological shock, C21(1); and non technological shocks, C22(1).

4 Empirical evidence

To estimate our model we proceed in two steps.
In this section we report evidence based on a bivariate SVAR model esti-

mated using Italian data, which employ only labor productivity and capital
stock. Then, we will show that the main qualitative results obtained in this
model also hold for an augmented model that includes a number of nominal
and real variables in addition to labor productivity and capital accumulation.
The data used to estimate the bivariate SVAR are real value added, em-

ployment in hours worked and real capital stock of the Italian energy sector.
We compute (log) labor productivity y as the ratio of real value added to
labor inputs. k is the log of capital accumulation. Data are quarterly. The
period goes from 1981:1 to 2005:1.1

1The database employed in the econometric analysis is extracted by the Productivity
Database provided by Istat (2010) for the Italian economy.
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The SVAR requires that the �rst di¤erence (�) of the log of productivity
y and capital accumulation k are stationary. This preliminary assumption
has been tested by the standard Dickey-Fuller test and Phillips-Perron test
which reject the null of unit root when applied to the �rst di¤erences of
logs (table 1). More precisely, the t-statistic for the null hypothesis of a
unit root in the �rst di¤erence of each series has been tested with 4 lags
and the intercept, at 5% signi�cance critical values. �y is an integrated
process which accepts the assumption of mixed-trend di¤erence stationary
process. But, �k is a stationary process which accepts at most the presence
of an intercept in its autoregressive process. For this reason we include the
intercept in the estimation of the original VAR.2

�k presents a break point in 1992. When we allow for a change in capital
accumulation we simply remove the di¤erent sample means before estimating
the VAR. Three di¤erent speci�cations of the time series in VAR are run
to test the robustness of the result. In the �rst case (speci�cation A) we
remove means by �k. In the second case, we remove the mean growth
shift for both productivity and capital accumulation after 1992. In the third
case we employ the raw data including a linear trend. Since the results for
the three speci�cations are similar, we present below only the outcomes for
speci�cation A. The information criteria AIC and SC can be used for model
selection such as determining the lag length of the VAR, with smaller values
of the information criterion being preferred. The values of the lag criteria
suggest to include two lags in the original VAR. All the criteria reported in
table 2 are discussed in Lütkepohl (1991).
As explained above, in order to estimate the SVAR we need to provide

long-run identifying restrictions. These restrictions are speci�ed in terms
of the elements of the long-run multipliers in the form of zero restrictions.
In our model the restriction means that the (accumulated) response of labor
productivity to the non technological shock is zero in the long-run. The point
estimates, standard errors, and z-statistics of the estimated free parameters
are reported together with the maximized value of the log likelihood in table
3.

2There is the issue to how handle the apparent time trend in productivity. To focus
this point we have estimated an augmented VAR including a linear trend. The results are
qualitatively similar to those for the base case discussed in the paper.
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�y �k
ADF �3:29

(�2:89)
�3:09
(�2:89)

PP �3:67
(�1:94)

�2:25
(�1:94)

Table 1: Augmented Dickey-Fuller test and Phillips-Perron test for unit root,
with 4 lags and intercept. Critical t values in parentheses.

�y �k
�y(�1) 1:523

(21:32)
�0:011
(�1:081)

�y(�2) �0:707
(�10:23)

0:007
(0:733)

�k(�1) �0:741
(�1:822)

1:751
(27:80)

�k(�2) 0:606
(1:524)

�0:785
(�12:74)

intercept 0:511
(3:966)

0:028
(0:921)

R-squared 0:91 0:98
S.E. equation 0:94 0:14
F-statistic 239:4 1963:9
Log likelihood �127:3 49:7
Akaike AIC 2:78 �0:94
Schwarz SC 2:91 �0:80
Log likelihood �74:5
Akaike information criterion (AIC) 1:78
Schwarz criterion (SC) 2:04

Table 2: Vector Autoregression Estimates. Sample (adjusted): 1981:3-
2005:1. t-statistic in parentheses.

Coe¢ cient Std. Error z-Statistic
C11(1) 5.79 0.420 13.78
C21(1) -2.20 0.443 -4.98
C22(1) 4.03 0.292 13.78
Log likelihood -79.720

Table 3: Structural VAR estimates.
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4.1 Impulse response functions

Figures 2-3 show the impulse response functions estimated from the empirical
model. The responses along with the con�dence intervals (�2 standard error)
are provided as recommended by Runkle (1987). Shocks are positive by
construction.
The panels of �gure 2 show the (log) labor productivity y and (log) capi-

tal accumulation k responses to a one unit technological shock. We interpret
this shock as an advance in technology. Both productivity and capital ac-
cumulation are permanently a¤ected by a positive technological shock. The
accumulated responses are, however, of opposite sign. We �nd a positive
impact for labor productivity which shifts towards the new steady state,
but a negative long-run impact on capital accumulation. More precisely, in
response to a positive one unit technological shock, labor productivity ex-
periences an immediate increases of about 1:3 percent, stabilizing after 40
quarters at an higher level. Conversely, capital accumulation experiences
an immediate decrease of 2:2 percent, eventually recovering in the long-run.
These responses can be in principle be reconciled with the idea that the initial
negative impact of the technological shock on investment may be partly o¤set
by a positive comovement between technology advance and capital accumu-
lation in the long-run, induced by technological improvement. Nonetheless,
�gure 2 displays that the cumulated impulse responses of capital accumula-
tion to the technological shock is, on the whole, negative and persistent. As
time passes, the cumulated responses in productivity and capital accumula-
tion become mirror images to each other because technological progress tends
to replace capital stock in the production function. Figure 2 illustrates the
tight inverse relation between productivity and capital accumulation. The
values of the long-run coe¢ cients suggest an implied long-run elasticity (in
absolute value) of about 0:38 percent. Hence, in Italian energy sector technol-
ogy and capital are substitutes: a positive technological shock will lead to a
rise in yt and a decline in kt. However, the same relationship is weaker in the
short-run: during the initial periods, the responses of capital accumulation
to technological shocks are more gradual than that of labor productivity.
Then, �gure 3 displays the responses of time series to one-unit non tech-

nological shock. We can interpret these responses as the shift of economy to
changes in nominal variables, like input prices or regulation, which impinge
upon capital accumulation in energy sector. Non technological shock leads
to a persistent increase in capital stock, with a peak response of 16 at 20
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quarters. On the other hand, the productivity response is initially positive.
A one percent non technological shock has a 0:23 percent impact e¤ect on
productivity in the short-run. But, after 6 to 13 quarters, the non techno-
logical shock leads to a decrease in productivity of roughly 1 percent. Then,
productivity returns to its original level, and the e¤ects of the non technolog-
ical shock vanishes over time. Conversely, the shock has a sizable permanent
impact on capital accumulation, thus emerging as the main source of unit
root detected in capital accumulation. Hence, in the long-run, the rise in
(log) capital accumulation is associated to an unchanged level for (log) pro-
ductivity. This dynamic response is consistent with the standard properties
of the Solow growth model, and with the traditional view of transitory ef-
fects of aggregate demand disturbances (i.e., accelerator models) on labor
productivity .

4.2 Variance decomposition

Table 4 presents the forecast error variance decomposition for the two vari-
ables y, k at various horizons. The forecast error variance decomposition tell
us the proportion of the movements in a variable due to its �own� shocks
versus shocks to the other variables. Table 4 gives this variance decomposi-
tion for our basic speci�cation. It has the following interpretation. De�ne
the t quarter ahead forecast error in productivity as the di¤erence between
the actual value of productivity and its forecast from equation (3) as of t
quarter earlier. This forecast error is due to unanticipated technological and
non technological shocks in the last t quarters. The number for labor pro-
ductivity at horizon t = 1; 5; 10; 20 gives the percentage of variance of the t
quarter ahead forecast error due to the two shocks. A similar interpretation
holds for capital accumulation.
Technological shocks account for most of the variation in labor productiv-

ity in energy sector under all speci�cations. Speci�cally, they explain under
the basic case the 67:5� 82:8 per cent of the variation in productivity at all
horizons. Non technological shocks account for 75:2 � 87:6 percent of the
forecast error variance of capital accumulation. Note that the results are
stable across alternative treatments of break, trend and mean.
One principal conclusion emerges from this table. Estimates of the rel-

ative contributions of the di¤erent shocks for both productivity and capital
accumulation show that only one shock captures most of the corresponding
variation over time. Thus, in the case of productivity after 20 quarters most
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Figure 2: Responses to technological shocks from the bivariate VAR model.
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Figure 3: Responses to non technological shocks from the bivariate VAR
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of the productivity variation is due to technological shocks (71:3%), with a
marginal response to non technological shocks. Alternatively, accumulation
variation is largely explained by non technological shocks (75:2%) with a
minor e¤ect for the other structural shock. In all cases, technological shocks
appear to be quite important for productivity �uctuation and growth at all
horizons.

4.3 Evidence from an augmented model

To check the robustness of the results, we estimate a higher dimensional
SVAR model. This augmented SVAR allows for four orthogonal non tech-
nological shocks, still identi�ed assuming that they do not a¤ect the level of
labor productivity. This augmented model provides information regarding
the e¤ects of technological shocks on a larger number of variables than was
the case for the bivariate SVAR. As before, we are mainly interested in the
relationship between technology and capital accumulation.
We add data on crude oil price, real interest rates and unemployment

rate. Data are from Eurostat. The nominal interest rate is the three-month
Italian Treasury Bill (BOT) rate. The de�ator of the Italian GDP is used to
compute the real interest rate. Finally, the national Italian unemployment
rate is used to extract the structural aggregate demand shocks. Data are
quarterly, and cover the period from 1983:1 to 2005:1.
Standard ADF and PP tests reject the null of unit root in oil price growth

(�p), real interest rate (r); and the unemployment rate (u) at a 5 percent
signi�cance level. However, for u as well as r; tests accept the assumption
of mixed-trend di¤erence stationary processes. For this reason, to estimate
the augmented SVAR we include a linear trend together with the intercept
and two lags. Then, we impose our restriction that only technological shocks
have a permanent e¤ect on labor productivity.
Figure 4 displays the responses of the time series to a one unit technolog-

ical shocks. The pattern of labor productivity and capital accumulation are
very similar to that obtained in the bivariate model: a positive technolog-
ical shock increases permanently productivity, but implies a corresponding
decline in capital accumulation. The elasticity of the variation (in absolute
value) is close to 0:4, a value very similar to that estimated with the bivariate
SVAR.
Note that the response of real interest rate r to the technological shock is

positive and persistent, in accordance with theory, given the higher returns
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to capital induced by the technological advance. Further, the response of oil
in�ation �p is negative and persistent because a technological advance as
well as a higher labor productivity would imply an improvement in e¢ ciency
with a reduction of oil demand in the long-run.
Finally, the bottom panel of �gure 4 shows that unemployment rate u

increases temporarily in response to a one unit technological shock, to go
back afterwards to the original steady state. This dynamic pattern seems
consistent with the hypothesis of natural unemployment rate.

5 Conclusions

The purpose of this paper was to investigate the relationship between labor
productivity and technological progress in energy sector. To study this is-
sue we employed a parsimonious SVAR, measuring the labor productivity
response to technological and non technological shocks. We contemplated
the case of Italy.
Estimates show that technological shocks have permanent e¤ects on the

level of productivity leading to a transition from one equilibrium to another.
Further, most of the variation in productivity is due to technological shocks
which account for roughly two-third of the productivity variation. For the
Italian data, it appears that technology and capital accumulation in energy
sector are substitutes. Additionally, favorable non technological shocks af-
fect permanently capital accumulation, but play a minor and transitory role
in explaining productivity growth, capturing only the residual fraction of
productivity �uctuations at high frequencies.
Thus, our �ndings tell us a story about the sources of shocks a¤ecting

productivity in energy sector. The data support the idea that technological
progress is necessary to gain a strong and persistent advance in labor pro-
ductivity. But, while the model provides a positive answer to the question
of the relative importance of technological shocks in growth of energy sector,
it is more prudent about the role of non technological shocks. That is, our
estimates suggest that components other than technological progress are less
important in driving productivity growth than markets and policy makers
expect.
This outcome has an important implication for energy policies. European

reforms of energy sector and national legislations formulated, in recent years,
mainly to support investments in the emerging �green�economy, may a¤ect
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Figure 4: Responses to technological shocks from the augmented VARmodel.
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capital accumulation, but cannot guarantee the jump of technology neces-
sary to rise up labor productivity in the long-run. Remedying this problem
will require the development of new policies aimed at promoting the rate of
technological progress in the energy sector.
Finally, from the methodological point of view, VARs do not eliminate

omitted variable biased. Impulse response functions and forecast errors de-
pend on structural shocks. A larger set of shocks could change the sensitivity
of variables in the system to each single shocks. Nonetheless, we believe that
the empirical model must be based on economic theory which captures the
main characteristics of the economy. Our model is a macro-economic par-
simonious representation of the energy sector: technological progress and
capital accumulation capture the main components of the labor productiv-
ity, and they allow to represent the dynamic changes of its structure over
time. As we have discussed, even considering a larger number of variables
the properties of the empirical model remain unchanged, and the e¤ects of
the non technological shocks remain small compared to those of the techno-
logical shocks.
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Productivity Accumulation

periods

ahead
Technological Non Technological Technological Non Technological

1 67.5 32.5 12.4 87.6

5 82.8 17.2 20.9 79.1

10 73.3 26.7 25.3 74.6

20 71.3 28.7 28.8 75.2

Table 4: Forecast error variance decomposition.
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