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Abstract. We propose a generalization of the Hukuhara difference. First,
the case of compact convex sets is examined; then, the results are ap-
plied to generalize the Hukuhara difference of fuzzy numbers, using their
compact and convex level-cuts. Finally, a similar approach is suggested
to attempt a generalization of division for real intervals.

1 General setting

We consider a metric vector space X with the induced topology and in particular
the space X = R", n > 1, of real vectors equipped with standard addition
and scalar multiplication operations. Following Diamond and Kloeden (see [3]),
denote by K(X) and K¢ (X) the spaces of nonempty compact and compact convex
sets of X. Given two subsets A, B C X and k € R, Minkowski addition and scalar
multiplication are defined by A+ B = {a+bla € A,b € B} and kA = {kala € A}
and it is well known that addition is associative and commutative and with
neutral element {0}. If & = —1, scalar multiplication gives the opposite —A =
(—1)A = {—ala € A} but, in general, A+(—A) # {0}, i.e. the opposite of A is not
the inverse of A in Minkowski addition (unless A = {a} is a singleton). Minkowski
difference is A — B = A+ (—1)B = {a —bla € A,b € B}. A first implication of
this fact is that, in general, even if it true that (A+C =B+ () < A = B,
addition/subtraction simplification is not valid, i.e. (A+ B) — B # A.

To partially overcome this situation, Hukuhara [4] introduced the following
H-difference:

AOB=C = A=B+C (1)

and an important property of © is that Ao A = {0}, VA € R" and (A+B)OB =
A, VA, B € R"; H-difference is unique, but a necessary condition for A © B to
exist is that A contains a translate {c¢} + B of B. In general, A— B # A© B.

From an algebraic point of view, the difference of two sets A and B may be
interpreted both in terms of addition as in (1) or in terms of negative addition,
ie.

ABB=C < B=A+(-1)C (2)

where (—1)C is the opposite set of C. Conditions (1) and (2) are compatible
each other and this suggests a generalization of Hukuhara difference:



Definition 1. Let A, B € K(X); we define the generalized difference of A and
B as the set C € K(X) such that

(i) A=B+C

AGB=0C {or(ii)B:A+(—1)C' (3)

Proposition 1. (Unicity of Ao, B)
If C = Aoy B egists, it is unique and if also AO B exists then AO, B = A0 B.

Proof. If C = Aoy B exists in case (i), we obtain C = A © B which is unique.
Suppose that case (ii) is satisfied for C and D, i.e. B = A+ (—=1)C and B =
A+ (-1)D; then A+ (-1)C=A+(-1)D = (-1)C=(-1)D = C=D. If
case (i) is satisfied for C and case (ii) is satisfied for D, i.e. A= B+ C and
B=A+(-1)D, then B= B+ C+(—1)D = {0} = C — D and this is possible
only if C = D = {c} is a singleton.

The generalized Hukuhara difference A ©4 B will be called the gH-difference
of A and B.

Remark 1. A necessary condition for A ©4 B to exist is that either A contains
a translate of B (as for A © B) or B contains a translate of A. In fact, for any
given ¢ € C, we get B+ {c} C A from (i) or A+ {—c} C B from (ii).

Remark 2. Tt is possible that A = B4+C and B = A+(—1)C hold simultaneously;
in this case, A and B translate into each other and C' is a singleton. In fact,
A = B+C implies B+{c} C AVc e C and B= A+ (—1)C implies A—{c} C B
Ve e Cie. A C B+ {c}; it follows that A = B+ {c} and B = A+ {—c}. On the
other hand, if ¢/, ¢” € C then A = B+{c¢'} = B+ {c"} and this requires ¢’ = ¢”.

Remark 8. If Ao, B exists, then B ©4 A exists and Boyg A= —(A 0, B).

Proposition 2. If Ao, B exists, it has the following properties:

1) Aoy A ={0};

2)(A+B)oy, B=A;

3) If Aoy B exists then also (—B)©4(—A) does and —(A0yB) = (—B)04(—A);
4)(A-B)+B=C <= A-B=C0,B;

5) In general, B—A = A—B does not imply A = B; but (A9y,B) = (Bog,A) =C
if and only if C = {0} and A = B;

6) If Bog A exists then either A+ (Boy4A) =B or B— (B0, A) = A and both
equalities hold if and only if B ©4 A is a singleton set.

Proof. Properties 1 and 5 are immediate. To prove 2) if C = (A+ B) ©4 B then
either A+ B=C+B or B=(A+B)+(—1)C =B+ (A+(-1)C); in the first
case it follows that C = A, in the second case A+ (—1)C = {0} and A and C
are singleton sets so A = C. To prove the firat part of 3) let C = Aoy B i.e.



A=B+C orB=A+(-1)C, then —A=—-B+(-C) or —-B=—-A— (-C)
and this means (—B) ©4 (—A) = —C; the second part is immediate. To see
the first part of 5) consider for example the unidimensional case A = [a™,a™],
B = [b7,b"]; equality A— B = B — A is valid if a= +a™ = b~ + b" and this
does not require A = B (unless A and B are singletons). For the second part of
5), from (Ao, B) = (Bo, A) = C, considering the four combinations derived
from (3), one of the following four case is valid: (A= B+ C and B=A+C)
or (A=B+C and A=B—-C)or (B=A+(-1)C and B=A+C) or
(B=A+(-1)C and A= B+ (—1)C); in all of them we deduce C = {0}. To
see 6), consider that if (B ©4 A) exists in the sense of (i) the first equality is
valid and if it exists in the sense of (ii) the second one is valid.

If X = R", n > 1 is the real n—dimensional vector space with internal
product (z,y) and corresponding norm ||z|| = \/(z, z), we denote by K" and K¢
the spaces of (nonempty) compact and compact convex sets of R™, respectively.
If ACR" and 8" ! = {u|u € R, ||u|| = 1} is the unit sphere, the support
function associated to A is

sa : R — R defined by
sa(u) =sup{(u,a)ja € A}, u € R™.

If A # () is compact, then s4(u) € R, Vu € S"~1. The following properties are
well known (see e.g. [3] or [5]):

— Any function s : R” — R which is continuous, positively homogeneous
s(tu) = ts(u),), Vt > 0, Vu € R™ and subadditive s(u' +u”") < s(u') + s(u”),
vu',u” € R™ is a support function of a compact convex set; the restriction

S of s to S"~ ! is such that §(ﬁ) = II}THS(U)’ Vu € R”, u # 0 and we can

consider s restricted to S®~!. It also follows that s : S*~! — R is a convex
function.

— If A € K% is a compact convex set, then it is characterized by its support
function and

A={z e R"|(u,z) < s4(u), Vu € R"} = {z € R"| (u, ) < sa(u), Yu € S""'}
— For A,B € K% and Yu € S"~! we have s(py(u) = 0 and

ACB=s4(u) <sp(u); A=B < s = sg,
spa(u) = ksa(u), Yk > 0; sparnp(u) = spa(u) + spp(u), Vh,h >0

and in particular
sarp(u) = sa(u) + sp(u);

— If s4 is the support function of A € K and s_ 4 is the support function of
—A € K%, then Yu € 8", s_4(u) = sa(—u);



— If v is a measure on R" such that v(S"™') = [ wv(du) = 1, a distance is

Sn— 1
defined by

1

2

po(A, B) = ||sa — spl| = [ n / [sa(u) — sp(u)?o(d) |
Sn—l

— The Steiner point of A € K is defined by 04 = n [ wusa(u)v(du) and
Sn—1
oa €A

We can express the generalized Hukuhara difference (gH-difference) of com-
pact convex sets A, B € K by the use of the support functions. Consider
A,B,C € K¢ with C = Ay B as defined in (3); let 54, sp, s¢ and s(_1)c be
the support functions of A, B, C, and (—1)C respectively. In case (i) we have
54 = sp + sc¢ and in case (ii) we have sp = 54 + 5(_1)c. S0, Vu € Snt

/[ sa(u) —sp(u) in case (i)
sc(u) = <SB(—U) — sa(—u) in case (i1)

Le. /salu) — sp(u) in case (i)
solu) = <S(—1)B(’LL) — S(-1)a(u) in case (ii) - (4)

Now, s¢ in (4) is a correct support function if it is continuous, positively
homogeneous and subadditive and this requires that, in the corresponding cases
(¢) and (i¢), s4 — sp and/or s_p — s_ 4 be support functions, assuming that s4
and sp are.

Consider s1 = s4 — sp and sy = sp — s4. Continuity of s; and ss is obvious.
To see their positive homogeneity let ¢ > 0; we have s1(tu) = sa(tu) — sp(tu)
= tsa(u) — tsp(u) = tsi(u) and similarly for s;. But s; and/or s; may fail
to be subadditive and the following four cases, related to the definition of gH-
difference, are possible.

Proposition 3. Let s4 and sp be the support functions of A,B € K& and
consider s1 =S4 — Sp, S2 = Sg — Sa; the following four cases apply:

1. If s1 and sy are both subadditive, then A©g B exists; (i) and (i) are satisfied
simultaneously and A ©4 B = {c};

2. If s1 is subadditive and s is not, then C = A©4 B ewists, (i) is satisfied and
SC =54 — SB:

3. If s1 is not subadditive and s is, then C' = A©y B exists, (it) is satisfied and
SC =S—_-B —S—A;,

4. If s1 and sa are both not subadditive, then A ©4 B does not exist.

Proof. In case 1. subadditivity of s1 and s means that, Vu',u"” € S*~!

sp:sa(u +u") —spu/ +u”) <sa(u)+sa(”) —sp(u) — sp(u”’) and

sy sp(u/ +u") —sa(u' +u") <sp(u')+spu”) —sa(u') —sa(u”);



it follows that

sa(u' +u") —sa(u') —sa(u”)

sp(u' +u") —sp(u') —sp(u”)
so that equality holds

sp(u' +u”) —sa(u +u") =sp(u') +sp(u”) —sa(u') — sa(u”).

Taking v’ = —u" = u produces, Yu € S" 1, sp(u) + sp(—u) = sa(u) + sa(—u)
i.e. sp(u)+s_p(u) = sa(u)+s_a(u) i.e. sp_p(u) = sa_a(u) and B—B = A—A
(A and B translate into each other); it follows that 3¢ € R™ such that A = B+{c}
and B = A+ {—c} so that Ao, B = {c}.
In case 2. we have that, being s1 a support function it characterizes a nonempty
set C € K% and sc(u) = s1(u) = sa(u)—sp(u), Vu € 8" !; then sy = sp+sc =
sp+c and A= B+ C from which (i) is satisfied.
In case 3. we have that sy the support function of a nonempty set D € K¢
and sp(u) = sp(u) — sa(u), Yu € S*~1 so that sp = sa +sp = sa_p and
B = A+ D. Defining C = (—=1)D (or D = (—-1)C ) we obtain C € K with
sc(u) = s_p(u) = sp(—u) = sp(—u) — sa(—u) = s_p(u) — s_a(u) and (1) is
satisfied.
In case 4. there is no C € K such that A = B + C (otherwise s1 = sa — sp
is a support function) and there is no D € K such that B= A+ D (otherwise
8o = 8p—84 is a support function); it follows that (i) and (i) cannot be satisfied
and A ©4 B does not exist.

Proposition 4. If C = Aoy B ezists, then ||C|| = py(A, B) and the Steiner
points satisfy oc = oa —o0p.

Proof. In fact py(A,B) = ||sa — sg|| and, if A Q4 B exists, then either s¢ =
SA—Sp OrSc = S_p—5S_a; but ||sa—sp|| = ||s—a—s_g|| as, changing variable
u into —v and recalling that s_4(u) = sa(—u), we have

ls—a —s-Bll = / [s—a(u) — s—p(u)*v(du) ()

Sn—1

- / (sa(~) — s5(—u)|>0(du)

STL*I
- / [5() — s5(0)0(~dv) = [l — sp]].
Snfl

For the Steiner points, we proceed in a similar manner:

n [ ulsa(u) - sp()]o(du), or

oc = ni:f: u[s_p(u) — s_a(w)]v(du) = nsnf_l v[sa(v) — sp(v)]v(—dv) (6)

and the result follows from the additivity of the integral.
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2 The case of compact intervals in R™

In this section we consider the gH-difference of compact intervals in R™. If n = 1,
i.e. for unidimensional compact intervals, the gH-difference always exists. In fact,
let A=[a",a"] and B = [b~,b"] be two intervals; the gH-difference is

. a” =b"+c¢c
(1) at = bt + ¢t
b~ =a —ct
bt =at —c™

[a™,a"] Qg [b=,b7]) =[c,ct] —=
or (i7)

so that [a™,a™] ©4 [b~,b%] = [¢™, ¢'] is always defined by
c” =min{a” —b",a" —b"}, ¢" =max{a” —b",a" —b"}
ie.
la,b] ©4 [¢,d] = [min{a — ¢,b — d}, max{a — ¢,b — d}].

Conditions (7) and (i4) are satisfied simultaneously if and only if the two intervals
have the same length and ¢~ = ¢*. Also, the result is {0} if and only if a= = b~
and at = b7,

Two simple examples on real compact intervals illustrate the generalization

(from [3], p. 8); [-1,1] © [-1,0] = [0, 1] as in fact (i) is [-1,0] + [0,1] = [-1,1]
but [0,0] ©4 [0,1] = [~1,0] and [0,1] ©4 [-3,1] = [0, 3] satisfy (7).
Of interest are the symmetric intervals A = [—a,a] and B = [—b,b] with

a,b > 05 it is well known that Minkowski operations with symmetric intervals
are such that A— B=B— A= A+ B and, in particular, A— A=A+ A = 2A.

We have [—a,a] ©4 [-b,b] = [—|a — b, |a — b]].
As 8% = {—1,1} and the support functions satisfy sa(—1) = —a~, sa(1) =
at, sp(—1) = —b~, sp(1) = b+, the same results as before can be deduced by

definition (4).

Remark 4. An alternative representation of an interval A = [a™,a™] is by the

use of the midpoint @ = % and the (semi)width @ = “+;a and we can

write A = (@,a), @ > 0, so that a~ = a@—a and a™ =a+a. If B = (3,5),
b > 0 is a second interval, the Minkowski addition is A + B = (@ + b,a + b) and
the gH-difference is obtained by A ©4 B = (a — b,|@ — b|). We see immediately
that Ao, A = {0}, A=B <= A0o,B = {0}, (A+ B)0oy B = A, but
A+ (BogyzA)=Bonlyifa<b.

Let now A = x" ; A; and B = x| B; where A; = [a; ,a; ], B; = [b; ,b]]
are real compact intervals (x?_; denotes the cartesian product).

In general, considering D = x_;(A4; ©4 B;), we may have A9y B # D e.g.
A ©4 B may not exist as for the example A, = [3,6], A = [2,6], By = [5, 10],
By = [7,9] for which (A1 Oy By) = [—4,—2}, (As Og B2) = [—5, —3], D =
[—4,—-2]x[-5,—3] and B+D = [1,8] x[2,6] # A, A+ (—1)D = [5,10] x [5,11] #
B.



But if A ©4 B exists, then equality will hold. In fact, consider the support
function of A (and similarly for B), defined by

sa(u) = max{(u,z) |a; <x; <al},ueS" (7)

it can be obtained simply by sa(u) = . w;a] + Y. w;a; as the box-constrained
u; >0 u; <0
maxima of the linear objective functions (u,x) above are attained at vertices

T(u) = (Z1(u), .oy Ti(U), o, Tp(u)) of A, ie. Zi(u) € {a7,a]}, i = 1,2,....,n.

et

Then
sa(u) —sp(u) = 3 wilal —b)+ 3 wila; —b;) (8)
u; >0 u; <0
and, being s_a(u) = sa(—u) = — 3 wa — 3 wa;,
u; <0 u; >0
s—p(u) —s—a(u) = 3 wila; —b7)+ X wilaf —b)). 9)
u; >0 u; <0

From the relations above, we deduce that

K2

provided that a; —b; < a; — b, Vi

(2

C = x?zl[aj' —b a7 — b; |

i

provided that a; —b; > aj — bj7 V1

(,L-){CZ xiala; = by af —bf]
Aoy B=C +<=
on (i) {

and the gH-difference A ©4 B exists if and only if one of the two conditions are
satisfied:

case (i) a; —b; <a; —b;,
case (i) a; —b; >af — b

K3

Examples:

1. case (i): Ay = [5,10], Ay = [1,3], By = [3,6], Bo = [2,3] for which
(A1 @g Bl) = [2,4}, (AQ @g Bg) = [—1,0] and A®gB =C= [2,4] X [—1,0] exists
with B4+ C = A, A+ (-1)C # B.

2. case (ii): A1 = [3,6], A2 = [2,3], By = [5,10], Bs = [1,3] for which
(A1 ©g By) = [—4,-2], (A2 04 B2) =[0,1] and Aoy, B =C = [-4,-2] x [0,1]
exists with B+C # A, A+ (-1)C = B.

3. case (1) + (13): A1 = [3,6], Ay = [2,3], B1 = [5,8], By = [3,4] for which
(A1 Oy Bi) = [-2,-2) = {2}, (420, By) = [-1,~1] = {~1} and A0, B =
C ={(—-2,-1)} exists with B+ C = A and A+ (-1)C = B.

We end this section with a comment on the simple interval equation

A+X =B (10)

where A = [a™,a™]|, B = [b™,b"] are given intervals and X = [z7,z7] is an
interval to be determined satisfying (10). We have seen that, for unidimensional
intervals, the gH-difference always exists. Denote by I(A) = a™ — a~ the length
of interval A. It is well known from classical interval arithmetic that an interval



X satisfying (10) exists only if I(B) > I(A) (in Minkowski arithmetic we have
(A4 X) > max{l(A),I(X)}); in fact, no X exists with 2~ < T if I(B) < I(A)
and we cannot solve (10) unless we interpret it as B — X = A. If we do so, we
get

a4+ =b" . a7 =b"—a”
casel(B)gl(A):{a++x+:b+ N
b-—at=a" . z7=b"—a"
casel(B)Zl(A):{l)+_gc:a+ Leo b e g

We then obtain that X = B©, A is the unique solution to (10) and it always
exists, i.e.

Proposition 5. Let A, B € Kc(R); the gH-difference X = Bo, A always exists
and either A+ (Bogy A)=B or B— (Bog4A) =A.

From property 6) of Proposition 7, a similar result is true for equation A 4+
X = B with A, B € K¢(R™) but for n > 1 the gH-difference may non exist.

3 gH-difference of fuzzy numbers

A general fuzzy set over a given set (or space) X of elements (the universe)
is usually defined by its membership function p : X — T C [0, 1] and a fuzzy
(sub)set u of X is uniquely characterized by the pairs (z, u, (z)) for each z € X;
the value p,(x) € [0,1] is the membership grade of x to the fuzzy set u. We
will consider particular fuzzy sets, called fuzzy numbers, defined over X =R
having a particular form of the membership function. Let u,, be the membership
function of a fuzzy set u over X. The support of u is the (crisp) subset of points
of X at which the membership grade u, (z) is positive: supp(u) = {z|z € X
() > 0}. For «a €]0, 1], the a—level cut of uw (or simply the o — cut) is defined
by [u]le = {z]z € X, p,(z) > a} and for « = 0 (or @ — +0) by the closure of
the support [u]p = cl{z|x € X, p,(z) > 0}.

A well-known property of the level — cuts is [u]o C [u]g for o > § (i.e. they
are nested).

A particular class of fuzzy sets u is when the support is a convex set and the
membership function is quasi-concave i.e. u,, ((1—t)z'+tx”) > min{p,, (z'), p, (")}
for every ', 2" € supp(u) and t € [0,1]. Equivalently, p,, is quasi-concave if the
level sets [u], are convex sets for all a € [0,1]. A third property of the fuzzy
numbers is that the level-cuts [u], are closed sets for all a € [0, 1].

By using these properties, the space F of (real unidimensional) fuzzy numbers
is structured by an addition and a scalar multiplication, defined either by the
level sets or, equivalently, by the Zadeh extension principle. Let u,v € F have
membership functions pu,,, 1, and a — cuts [u]q, [V]a, @ € [0,1] respectively. The
addition v + v € F and the scalar multiplication ku € F have level cuts

[u+v]a = [U]a + [V]a = {z+ylw € [ula, y € [v]a} (11)
[kulo = klu)q = {kz|z € [u]a} (12)



In the fuzzy or in the interval arithmetic contexts, equation u = v 4+ w is not
equivalent tow =u—v=u+ (—1)v or to v =u —w = u+ (—1)w and this has
motivated the introduction of the following Hukuhara difference ([3], [5]). The
generalized Hukuhara difference is (implicitly) used by Bede and Gal (see [1]) in
their definition of generalized differentiability of a fuzzy-valued function.

Definition 2. Given u,v € F, the H-difference is defined by u©v = w <= u =
vtw; if uOv exists, it is unique and its a—cuts are [uOV], = [u; —v, ,ul —vl].
Clearly, u©u = {0}.

The Hukuhara difference is also motivated by the problem of inverting the
addition: if z, y are crisp numbers then (z +y) —y = x but this is not true if z, y
are fuzzy. It is possible to see that (see [2]), if w and v are fuzzy numbers (and
not in general fuzzy sets), then (u+ v) © v = u i.e. the H-difference inverts the
addition of fuzzy numbers.

The gH-difference for fuzzy numbers can be defined as follows:

Definition 3. Given u,v € F, the gH-difference is the fuzzy number w, if it
exists, such that

_ () u=v+w
quU_w(:}{or(z‘i)v—qu(l)w' (13)

If w©g4 v exists, its o — cuts are gwen by [u Og4 v]o = [min{u; — vy, ul —
vl b max{uy, — vy, ul — v} anduOv=uOyv if uOv exists. If (i) and (ii)
are satisfied simultaneously, then w is a crisp number. Also, u9,u = u@u = {0}.

A definition of w = u ©4 v for multidimensional fuzzy numbers can be ob-
tained in terms of support functions in a way similar to (4)

(s —spia)  mease ()
su(pie) = <S(—1)U(P; a) — s(—1yu(p; @) in case (i) ’ €[0,1] (14)

where, for a fuzzy number u, the support functions are considered for each a—cut
and defined to characterize the (compact) o — cuts [u]q:

Sy ¢ R™ x [0,1] — R defined by
su(p; @) = sup{(p, z) |x € [u]} for each p € R", a € [0, 1].

In the unidimensional fuzzy numbers, the conditions for the definition of
w=1uQgygv are

o = min{u, — v,
wl = max{u, — v,

- + ot
_ w L, UL — v
o = [z ] = [ 0 ol { i)
)’ o [0
provided that w;, is nondecreasing, w. is nonincreasing and w, < w}.
If u ©4 v is a proper fuzzy number, it has the same properties illustrated in
section 1. for intervals.
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Proposition 6. If u Oy v exists, it is unique and has the following properties:
1) uozu=0;

2) (utv) Oy v =u;

3) If u©4v exists then also (—v)O4(—u) does and {0} 04 (uO4v) = (—v)O4(—u);
4)(u—v)+v=w <= u—v=w0O,v;

5) (uGyv) = (vOyu)=w if and only if (w = {0} and u=v);

6) If v ©O4 u exists then either v+ (vOgu) =u or v — (v Q4 u) = u and if both
equalities hold then v O4 u is a crisp set.

If the gH-differences [u]o ©4 [v]o do not define a proper fuzzy number, we
can use the nested property and obtain a proper fuzzy number by

[uGgv]a = ﬁL>J ([uls Og [v]s); (16)

As each gH-difference [u]3©,4[v]s exists for 5 € [0, 1] and (16) defines a proper
fuzzy number, it follows that uégv can be considered as a generalization of
Hukuhara difference for fuzzy numbers, existing for any u, v. A second possibility
for a gH-difference of fuzzy numbers may be obtained following a suggestion by
Kloeden and Diamond ([3]) and defining 2 = u©,v to be the fuzzy number whose
a — cuts are as near as possible to the gH-differences [u]q ©4 [v]q, for example

by minimizing the functional (w, > 0 and ~,, > 0 are weighting functions)

Gzlu,v) = [(wa [20 — (WO v)a ] + 74 [2d — (w0, v)E]*)da

Ot—

such that z;, T, 28 |, z;, <z} Va €[0,1].
A discretized version of G(z|u,v) can be obtained by choosing a partition
0=ap<a; <..<ay=1o0f]0,1] and defining the discretized G(z|u,v) as

N
Gn(zlu,v) = 3w [57 — (o, 0)7 )" +7; [2F — (o, v)f ]
1=0

we minimize Gy (z|u, v) with the given data (u©4v); = min{u,, —v, ,ul —vl

[e 7R (673
and (uOyv); = max{uy, —v,,, uf, —vJ }, subject to the constraints z; < 2z <
o <zy < z]'\", < z}}_l <..< zar . We obtain a linearly constrained least squares
minimization of the form

min (z —w)T D?*(z —w) s.t. Bz >0
ZeR2N+2

where z = (ZJ,Z;,...,ZN,ZX},ZX}_D...,ZS_), w; = (u Og v)i_v w = (u Og ’U)+

A A i

W= (Wy , WYy eees Wy Wiy Wh_ 14 eeey Wy )y D = diag{\/@0, ooy JON s /TN > s /T0
and E is the (N, N + 1) matrix
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0 0 ... -11

which can be solved by standard efficient procedures (see the classical book [6],
ch. 23). If, at solution z*, we have z* = w, then we obtain the gH-difference as
defined in (13).

4 Generalized division

An idea silmilar to the gH-difference can be used to introduce a division of real
intervals and fuzzy numbers. We consider here only the case of real compact
intervals A = [a",a"] and B = [b~,b"] with b~ > 0 or b" <0 (i.e. 0 ¢ B).

The interval C' = [c™, c"] defining the multiplication C' = AB is given by

¢ =min{a b ,a b",atb ", a"b}, ¢t =max{a" b ,a b, aTb,aTb}

and the multiplicative "inverse" (it is not the inverse in the algebraic sense) of
an interval B is defined by B! = [b%, b%], we define the generalized division
(g-division) +, as follows:

(i) A=BC

A+;B=C <= {or(ii)B:AC_l .

If both cases (i) and (i) are valid, we have CC~! = C71C = {1}, i.e. C = {¢},
C~! = {4} with €# 0. It is easy to see that A+, B always exists and is unique
for given A = [a~,a"] and B = [b—,b"]| with 0 ¢ B. It is easy to see that it can
be obtained by the following rules:

Case 1. If (e <at <0and b= < b" < 0)or (0 < a~ < at and
0<b™ <b") then

- gt - gt
¢ =min{—, 7} >0, ¢ = max{Z=, 2} > 0;

Case 2. If (@@ <a” <0and 0 < b” < b)) or (0 < a < a' and
b~ < bT < 0) then

+ —
c” :min{%,%}go, C+:maX{ZT7ZT}SO?
Case 3. If (a= <0,a" >0and b~ <bT <0) then
- +
a a
7:7< +:7> T
c bi_O,c b*_o’
Case 4. If (@ <0,a">0and 0 < b~ <b") then
- +
__a L a
C —bTSO,C —bTZO
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Remark 5. 1f 0 €]b~,b" | the g-division is undefined; for intervals B = [0,b"] or
B = [b,0] the division is possible but obtaining unbounded results C' of the
form C' =] — co,¢™] or C = [¢™, +o0[: we work with B = [¢,b"] or B = [b, €]
and we obtain the result by the limit for ¢ — 07. Example: for [-2, —1] <40, 3]
we consider [—2, —1] +, [¢,3] = [cz,cl] with (case 2.) ¢ = min{5?, =1} and

cr =max{=2, 5}} and obtain the result C' = [-o0, —3] at the limit £ — 0.

The following properties are immediate.

Proposition 7. For any A = [a~,a™"] and B = [b~,b"] with 0 ¢ B, we have
(here 1 is the same as {1}):

1. B+,B=1,B+,Bt={bbt} (= {B?} if b= =bt =b);

2. (AB) +y B = A;

3. 1+,B=B'andl+,B~'=B.

In the case of fuzzy numbers u,v € F having membership functions p,,, p,
and a — cuts [u]o = [uy,ul], [v]a = [vy,v2], 0 ¢ [v]o Yo € [0, 1], the g-division
+4 can be defined as the operation that calculates the fuzzy number w = u=+4v €

1

F having level cuts [w], = [w,,,w}] (here [w];! = [w%, w%])

provided that w is a proper fuzzy number.
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