Universita
degli Studi di Urbino
“Carly Bo"

' oy, Facolta
!Ia’ di Economia
[sintuto di Scicnze
Economiche
WP-EMS

Working Papers Series in Economics,
Mathematics & Statistics

“Differential Evolution Methods for the
Fuzzy Extension of Functions”

e Luciano Stefanini (U. Urbino)

WP-EMS # 2007/05

Differential Evolution Methods for the Fuzzy
Extension of Functions

Luciano Stefanini

University of Urbino "Carlo Bo", ITALY
lucste@uniurb.it

Abstract. The paper illustrates a differential evolution (DE) algorithm
to calculate the level-cuts of the fuzzy extension of a multidimensional
real valued function to fuzzy numbers. The method decomposes the fuzzy
extension engine into a set of "nested" min and max box-constrained op-
timization problems and uses a form of the DE algorithm, based on multi
populations which cooperate during the search phase and specialize, a
part of the populations to find the the global min (corresponding to lower
branch of the fuzzy extension) and a part of the populations to find the
global max (corresponding to the upper branch), both gaining efficienty
from the work done for a level-cut to the subsequent ones. A special ver-
sion of the algorithm is designed to the case of differentiable functions,
for which a representation of the fuzzy numbers is used to improve ef-
ficiency and quality of calculations. The included computational results
indicate that the DE method is a promising tool as its computational
complexity grows on average superlinearly (of degree less than 1.5) in
the number of variables of the function to be extended.

1 Introduction

Appropriate use of fuzzy numbers in applications requires at least two features
to be satisfied: (1) an easy way to represent and model fuzzy information with
a high flexibility of shapes, e.g. allowing asymmetries or nonlinearities; (2) a
relative simplicity and computational efficiency to perform exact fuzzy calcula-
tions or to obtain good approximations of the results. In general, the arithmetic
operations on fuzzy numbers can be approached either by the direct use of the
membership function (by the Zadeh extension principle) or by the equivalent use
of the o — cuts representation. By the oo — cuts approach, it is possible to define
a parametric representation of fuzzy numbers with the advantage of obtaining a
wide family of fuzzy numbers (see [12]). It is well known that the fuzzy extension
principle requires to solve a set of optimization problems and different heuristic
methods have been proposed to obtain good solutions with a small number of
function evaluations. Well known fundamental algorithms are the vertex method
and its modifications (see [15] and [10]); the transformation method (see [6]) in
its general or reduced versions (see [8] for an efficient implementation); a sparse
grids method (see [9]). We suggest here two procedures based on the differential
evolution (DFE) method of Storn and Price (see [13], [14], [11]) and adapted to

take into account both the nested property of a — cuts and the min and max
problems over the same domains. In particular, we use simultaneous multiple
populations that collaborate each other and specialize during the process to find
all the required solutions. Computational results are reported that indicate the
DE method as a promising tool, as it exhibits, on average, superlinear compu-
tational complexity (of degree less than 1.5) in the number of variables.

2 Fuzzy numbers and fuzzy extension principle

We will consider fuzzy numbers and intervals, i.e. fuzzy sets defined over the field
R of real numbers having a particular form. A general fuzzy set over R is usually
defined by its membership function p: R — T C [0, 1] and a fuzzy (sub)set u
of R is uniquely characterized by the pairs (z, u,(z)) for each z € R; the value
oy, () € [0,1] is the membership grade of = to the fuzzy set u. Denote by F(R)
the collection of the fuzzy sets over R. Elements of F(R) will be denoted by
letters u, v, w and the corresponding membership functions by f,,, fb,, ty,-

Fundamental concepts in fuzzy theory are the support, the level-sets (or level-
cuts) and the core of a fuzzy set:

Definition 1. Let u,, be the membership function of a fuzzy set u over R. The
support of u is the (crisp) subset of points of R at which the membership grade
o, () is positive: supp(u) = {z|r € R, u,(x) > 0}. For « €]0,1], the a—level cut
of u (or simply the o — cut) is defined by [u]o, = {z|z € R, p,(x) > a} and for
a =0 by the closure of the support [u)o = cl{z|z € R, p, (z) > 0}. The core of u
is the set of elements of R having membership grade 1, i.e. core(u) = {z|z € R,
() = 1} and we say that u is normal if core(u) # 0.

It is well-known that the level — cuts are "nested", i.e. [u]y C [u]g for @ > S.

A particular class of fuzzy sets u € F(R) is when the support is a convex
set (A is said convez if (1 — t)z’ + ta” € A for every 2/;2” € A and all t €
[0,1]) and the membership function is quasi-concave, i.e. supp(u) is convex and
o ((1=t)2'+t2") > min{p, (x'), p, (z'")} for every z’, " € supp(u) and ¢t € [0, 1].
Equivalently, p,, is quasi-concave if the level sets [u], are convex for all a € [0, 1].

Finally, if the membership function is upper semi-continuous, then the level-
cuts are closed.

Definition 2. A fuzzy set u is a fuzzy quantity if the o — cuts are nonempty,
compact intervals of the form [u], = [uy,ut] C R. If 3u € R such that core(u) =
{u}, w is a fuzzy number and u is called a fuzzy interval if Ju—,uT € R, u~ < u™
such that core(u) = [a—,ut].

The "nested" property is the basis for the LU representation (L for lower, U
for upper). We denote by F the set of fuzzy quantities.

Definition 3. An LU-fuzzy quantity (number or interval) u is completely deter-
mined by any pair u = (u™,u™) of functions u—,ut : [0,1] — R, defining the
end-points of the o — cuts, satisfying the three conditions:(1) u~ : « — u, € R
is a bounded monotonic nondecreasing left-continuous function Vo €]0,1] and
right-continuous for o = 0;(ii) u™ : @« — ul € R is a bounded monotonic non-
increasing left-continuous function Vo €)0, 1] and right-continuous for o = 0;(iii)
uy, <ul Vael0,1].

The support of u is the interval [uy ,ud] and the core is [u] ,u]]. We refer to
the functions u(__) and ut) as the lower and upper branches on u, respectively. If

the two branches Uy and u:) are continuous invertible functions then g, (.) is
formed by two continuous branches, the left being the increasing inverse of u(f)
on [uy ,uy] and, the right, the decreasing inverse of u(f) on [uf,ug].

There are many choices for Uy and u?f). If we start with two decreasing shape

functions p(.) and ¢(.) and with four numbers u; < u; < uf <y defining the
support and the core of u then we can model u) and u?f) by u;, =uy — (uy —
ug)p(e) and u}f = uf — (uf — uf)g(a) for all a € [0,1]. The simplest fuzzy
quantities have linear branches: a trapezoidal fuzzy interval, denoted by u =
(a,b,c,d), where a < b < ¢ <d, has a—cuts [ulo = [a + a(b—a),d — a(d — c)],
a € [0, 1], obtaining a triangular fuzzy number if b = c.

Consider now the extension of function f : R" — R to a vector of n fuzzy
numbers v = (ug, Uz, ..., un) € (F)", with k — th component v, € F given by
[ugla = [u,;a,u;a] for k =1,2,...,n or p,, :supp(up)— [0,1] for k =1,2,...,n
and denote v = f(u1,us, ..., Up)-

The extension principle introduced by Zadeh in [16] is the basic tool for fuzzy
calculus; it states that pu, is given by

() = {(S)up{min{uul(wl), s b, (X2)}y = f(@1, 0 20)} if y € Range(f)

otherwise
(1)
where Range(f) = {y € R|3(z1,...,zn) E R" s.t. y = f(x1,...,2Zn)}
For a continuous function f : R™ — R, the a—cuts of the fuzzy extension v are
obtained by solving the following box-constrained global optimization problems
(a € [0,1])

v, =min{f(z1,z2,...,Tn)|Tk € [Uk]a, E=1,2,...,n} (2)

,U;r = maX{f(l’l,IQ,...,:L‘n)|IL'k € [uk]om k= 1723 ,’Il} (3)

If the function f(z1, 2, ...,) is sufficiently simple, the analytical expressions for
v, and vl can be obtained, as it is the case for many unidimensional elementary
functions.

For general functions, we need to solve numerically the global optimization
problems (2) and (3) above; general methods have been proposed and a very
extended scientific literature is available. It is clear that in these cases we have
only the possibility of fixing a finite set of values o € {ay,...,aps} and obtain

the corresponding v, and v} pointwise; a sufficiently precise calculation requires
M in the range from 10 to 100 or more (depending on the application and
the required precision) and the computational time may become very high. To
reduce these difficulties, various specific heuristic methods have been proposed;
among others, the vertex method and its variants (see [3], [1] and [10]), the
transformation method (see [6], [7], [8]), the interval arithmetic optimization
with sparse grids (see [9]).

All the specific methods try to take computational advantage from the spe-
cific structure of "nested" optimizations (2)-(3) intrinsic in the properties of the
a—cuts. We will see that, at least in the differentiable case, the advantages of the
LU representation appear to be quite interesting, based on the fact that a small
number of « points is in general sufficient to obtain good approximations (this
is the essential gain in using the slopes to model fuzzy numbers), so reducing
the number of constrained min (2) and maz (3) problems to be solved directly.
On the other hand, finding computationally efficient extension solvers is still an
open research field in fuzzy calculations.

3 Representation of LU-fuzzy numbers

As we have seen in the previous section, the LU representations of fuzzy numbers
require to use appropriate (monotonic) shape functions to model the lower and
upper branches of the o — cuts. In this section we present the basic elements
of a parametric representation of the shape functions proposed in [5] and [12]
based on monotonic Hermite-type interpolation. The parametric representations
can be used both to define the shape functions and to calculate the arithmetic
operations by error controlled approximations.

We first introduce some models for "standardized" differentiable monotonic
shape functions p : [0,1] — [0,1] such that p(0) =0 and p(1) = 1 with p(t)
increasing on [0, 1]; if interested to decreasing functions, we can start with an
increasing function p(.) and simply define corresponding decreasing functions
q:[0,1] — [0,1] by g(t) = 1 —p(t) or q(t) = p(p(t)) where ¢ :[0,1] — [0,1]
is any decreasing bijection (e.g. o(t) =1 —1t).

Valid shape functions can be obtained by p : [0,1] — [0, 1], satisfying the
four Hermite interpolation conditions p(0) = 0, p(1) = 1 and p'(0) = S,
p'(1) = B, for any value of the two nonnegative parameters §; > 0, i = 0, 1.

To explicit the parameters, we denote the interpolating function by ¢ —
p(t; By, B1) for t € [0,1].

We recall here two of the basic forms illustrated in [12]:

2 —
o (2,2)-rational spline: p(¢; 8y, 81) = +(t0j_%01t_(12):()1_t);

L1#2(3—2t)+ By — By (1 —)% +B1t7]

1
o mixed exponential spline: p(t; 5y, 51)
where a = 1+ 3 + ;.
Note that in both forms we obtain a linear p(t) = ¢, Vt € [0,1] if 8, =8, =1
and a quadratic p(t) = t? + Bot(1 — t) if By + 3, = 2.

In order to produce different shapes we can either fix the slopes 5, and 3, (if
we have information on the first derivatives at ¢ = 0, t = 1) or we can estimate
them by knowing values of p(t) in additional points.

The model functions above can be adopted to represent the functions "piece-
wise", on a decomposition of the interval [0,1] into N subintervals 0 = ap <
a; < ... < a1 < a; <<ay = 1. It is convenient to use the same sub-
division for both the lower u; and upper u} branches (we can always reduce
to this situation by the union of two different subdivisions). In each subinterval
I; = [o;—1, o], the values and the slopes of the two functions are

- — + .t - .- + .t
Uiy = Yo,i > Y(ay_q) = Yo,i > u(ai) Uy s Uy T Ui (4)
/= I /+ _ gt — + g+
U,y = o 5 U,) = dos > (D= s U,y = di
and by the transformation ¢, = (j _O” 11, a € I;, each subinterval I; is mapped

into the standard [0, 1] interval to determine each piece independently. Globally
continuous or more regular C*) fuzzy numbers can be obtained directly from the
data (for example, uy; = ug 1, ufz = uar’iH for continuity and dj; = dg ;1.
dfb = do+,i+1 for differentiability at o =).

Let p (t) denote the model function on I;; we obtain p; (t) = p(t; Bo.is B1i)s
pi (t) =1 —p(t; Bg, B7,) with 85, = ﬁdﬂ. and 3, = _%aﬁ for

j = 0,1 so that, for a € [a;—1, @] andz-l ,2.,,, N:

Uy =ug,; + (up; —ug)py (ta) 5 ulb =ud; + (ul; —ud)pf (ta). ()

The illustrated monotonic models suggest a first parametrization of fuzzy
numbers on the trivial decomposition of interval [0, 1], with N = 1 (without
internal points) and ag = 0,3 = 1. In this simple case, u can be represented by
a vector of 8 components (the slopes corresponding to u; are denoted by du; |,
ete)

u = (uy, duy s ug', dug'suy, duy s uy, buy) (6)
with ug,duy,uy,0u; for the lower branch u; and wug,duf,uf,sul for the
upper branch u?.

On a decomposition 0 = ag < a1 < ... < any = 1 we can proceed piecewise.
For example, a differentiable shape function requires 4(N + 1) parameters

uw= (a;u;,0u; ,ul,0u)izo1,. N with (7)
uy <up <. <uy <ul <ul , <. <uf (data)
Su; > 0,6u; <0 (slopes).

and the branches are computed according to (5). In [5] and [12] we have analyzed
the advantages of the LU representation in the computation of fuzzy expressions.

4 Differential Evolution algorithms for fuzzy arithmetic

In this section we adopt an algorithmic approach to describe the application of
differential evolution methods to calculate the fuzzy extension of multivariable
function, associated to the LU representation of the fuzzy quantities involved.

Let v = f(uq,us,...,u,) denote the fuzzy extension of a continuous function
f in m variables; it is well known that the fuzzy extension of f to normal up-
per semicontinuous fuzzy intervals (with compact support) has the level-cutting
commutative property (see [4]), i.e. the a—cuts v, = [v, ,v}] of v are the images
of the a— cuts of (u1,us, ..., u,) and are obtained by solving the box-constrained
optimization problems

= mln{f(ml,x27...,xn)|xk € [u;a,u;a], k= 1,2,...,n}
=m

(8)
ax {f(xl,xg, ey Tp)| T € [u;’a,u;a], k=1,2, ,n} .

Vo
(EP)qy : N
Ua

For simplicity, we will illustrate the case of differentiable representations (7)
and differentiable function f.

Let up = (u,,0uy,, u;i,du:i)i:0717__.71v be the LU-fuzzy representations of
the input quantities for k = 1,2,...,n and v = (v; ,dv; ,v;",6v;)iz0.1,.. N ; the
«a — cuts of v are obtained by solving the box-constrained optimization problems
(8).

For each « = o, © = 0,1,..., N the min and the max (8) can occur either
at a point whose components zj ; are internal to the corresponding intervals
[u;z,uﬁy] or are coincident with one of the extremal values; denote by z; =

~— ~— /\+ _ /\+ /\+ . .
(Ty4s-T,,;) and T = (Z],,...,7, ;) the points where the min and the max
take place; then v;” = f(z;,%5,,...,7, ;) andv; = f(Z],,%5,,...,T, ;) and the

slopes dv; , dv;” are computed (as f is differentiable) by

1 ? (2

" AfE e E) " AT
Sv = Z B SUL RS el LAY VY Z LT st (9
A 8.Tk k,i axk k,i ()
k=1 k=1
n ~ . n A~ ~
of(@f) of(@f,, ...zl)
Svt = Z B YT + Z Y sat o (10
i axk ki 8$k ki ()
=1 k=1
Ez,i:ulz,z Ex,ifuk i

If, for some reasons, the partial derivatives of f at the solution points are not
available we can produce an estimation of the shapes dv; and 61}?‘ .

The idea of DE to find min or max of {f(x1,...,xn)|(z1,...,xn)EA C R"} is
simple (see [13] and [14],[2] for constraints handling).

DE is a (parallel) direct search algorithm wich utilizes a "population" z(1) =
(21, ey)P,y V) = (21, ., 2,) V) EA of NP feasible points for each gen-
eration (i.e. for each iteration) to obtain a new set of points by recombining
randomly the individuals of the current population and by selecting the best

generated elements to continue in the next generation. The initial population is
chosen randomly and should try to cover uniformly the entire parameter space.

Denote by 29 the p—th vector if the population at iteration (generation)
§p,g)

At each iteration, the method generates a set of candidate points y®9) to
substitute the elements 29 of the current population, if y»9) is better.

To generate y?9) two operations are applied: recombination and crossover.

A typical recombination operates on a single component j € {1,...,n} and
generates a new perturbed vector of the form P9 = glr9) 4 ’y[wgs’g) - xg-t’g)],
where 7, s,t € {1,2,...,p} are chosen randomly and v €]0, 2] is a constant (even-
tually chosen randomly for the curent iteration) that controls the amplification
of the variation.

The potential diversity of the population is controlled by a crossover operator,
that construct the candidate y®9 by crossing randomly the components of the

perturbed vector UJ(-p’g) and the old vector :c;-p’g):

g and by x its j—th component (j =1,...,n).

if .7 % {j17j27 "'ajk}
with k£ random between 1 and n and 0 with a crossover probability ¢

(p,g9) _ vj(}%g) if .]E {jlvaa"'ajk}
i = 2P9)
J

and ji, ja, ..., jr being random components if & is not 0.

So, the components of each individual of the current population are modified
to y§p 9) by a given probability q.

Typical values are v € [0.2,0.95], ¢ € [0.7,1.0] and NP > 5n (the higher
NP, the lower 7).

The candidate y®9) is then compared to the existing z®9) by evaluating
the objective function at y9) : if f(y®9)) is better than f(x(”9)) then y®9)
substitutes z®9) in the new generation g + 1, otherwise =" is retained.

Many variants of the recombination schemes have been proposed and some
seem to be more effective than others. Examples are:

DE/rand/1: v{"? = £{"9) 4 y[z{#9) _ 3(t0)),

DE/best/1: vj(.p’g) = x;b%t’g) + ’y[:cg.s’g) - :cg»t’g)] where z(%¢5%:9) is the current
best solution;

DE/rand-best /2: v§p’g) = x;-p’g) + ’y[arg-b%t’g) — xg-p’g) + wgfs’g) — av;t’g)];

DE/best/2: v§p’g) = xg»best’g)—i-’y[:c;sl’g)+x§‘g2’g)—zcg-tl’g)—xgh’g)], s1,t1, 82,12 €
{1,2,...,p} are random;

DE/rand/Q: ,U§;Dag) _ ;L‘;-T’g) + ’7[.1'5-51“(]) + xg_sz,g) _ xg_tl,g) _ m§t2,9)]7

To take into account the particular nature of our problem, we modify the
basic procedure and examine two different strategies:

1. SPDE (Single Population DE Procedure): start with the (o = 1) —cut back
to the (o = 0) — cut so that the optimal solutions at a given level can be inserted
into the "starting" populations of lower levels; use two distinct populations and

perform the recombinations such that, during generations, one of the populations
specializes to find the minimum and the other to find the maximum.

2. MPDE (Multiple Populations DE Procedure): use 2(N + 1) populations
to solve simultaneously all the box-constrained problems (8); N + 1 populations
specialize for the min and the others for the max and the current best solution
for level «; is valid also for levels aq, ..., ;1.

Let [u;l,ujl}, j=1,2,.,nand f: R" — R be given; we have to find v;
and vj' according to (8) for 4 = 0,1, ..., N. The slope parameters jv
computed by (9) and (10).

To handle the feasibility constraints we have to ensure either that at each

: - (p,9) +
generation we have U ; < Y; < Ui,

(&1 Ty ;) and T = (Z],, ..., T, ;) are feasible.

An efficient constraint handling method has been examined in [2], where a
tournament selection is proposed, based on three criteria:

(1) any feasible solution is preferred to any infeasible solution;

(2) among two feasible solutions, the one with better objective value is pre-
ferred;

(3) among two infeasible solutions, the one having smaller constraints viola-
tion is preferred.

In our case, as we have simple box-constraints, it is easy to produce feasible

starting populations, as we have to generate random numbers :Uj(-p 0 between the

= vl are

1 ?

or at least that the final solutions z; =

lower u;; and the upper uj+i values.

K3

During the iterations, we use a variant of the method above, where the y(#9)
are progressively forced to be feasible or with small infeasibilities and a penalty
is assigned to infeasible values:

(i) modify yj(»p’g) to fit [u;, — g%,uj’z + g%], j = 1,2,...,n with small ¢ ~
10*2(u;:i —u;,), so that the eventual infeasibilities decrease rapidly during the
generation process;

(i) if the candidate point 39) is infeasible and has a value f(y"9)) better
than the current best feasible value f(z(%¢*9)) then a penalty is added and the
value of y®9) is elevated to f(z(***5:9)) 4-¢’ (for the min problems) or reduced to
f(z(best:9)) — ¢’ (for the max problem), being &’ ~ 10~3 a small positive number.

The first strategy SPDE is implemented in algorithm 1. Function ran(0,1)
generates a random uniform number in [0,1].

Algorithm 1: (Single Population DE procedure: SPDE with DE/rand/1).
Choose p = 101, gmax ~ 500, g and ~.
select (xgl), e xg,l)), x,(cl) € [u,;N7uZ7N] Vk, Il =1,...,2p (initial population)
evaluate y() = f(:cgl), ...,mg))
fori=N,N—-1,...,0
for g =1,2,...,gmax (up to gmax generations or other stopping rule)
forl=1,2,....,2p
select (randomly) r,s,t € {1,2,...,2p} and j* € {1,2,...,n}
forj=1,2,...n
if (j = j* or ran(0,1) < q) then z/; = xy) + w[mg‘g) — xét)] else '/, = 20
ensure that u; ; < x; < u;z (or other feasibility handling)
end
evaluate y = f(z,...,2},)
if | <pandy < y® then substitute (z1, ..., z,) " with (],...,2/,) (min)
if 1 > pand y >y then substitute (1, ..., z,) Y with (2],...,2],) (max)
end
end
v, = y") = min {y(l)|l =1,2, ...,p} s (@ @) = (21, ey)
v =y =max {y®*Ol=1,2,..,p} , @], .2 ,) = (@1, mn))
ifi <N

select (xgl), ...,xﬁf)), m,(gl) € [u;’iil,u‘k"iil] Yk, l=1,..,2p

including (il_,w ...,/x\;i) and (:’E\i’:l, "'75571,1')
endif

end

10

The second strategy MPDE is implemented in algorithm 2.

Algorithm 2: (Multi Populations DE procedure: MPDE with DE/rand/1).
Choose p =~ 101, gmax ~ 500, g and ~.
select (21", ...z, 2V [ug juf] Yk, 1=1,..,2p, i = 0,1,..,N
let y(h) = f(:cgl’i), ,xﬁf”)
let v; =min {y(l’j)|j =0,...,4,Vl}, v = max {y(l’j)\j =0,...,4,Vl}
denote by ff,ﬁs\:r € R" the points where v; and v;r are taken
for g =1,2,...,9max (UP tO gmax generations or other stopping rule)
fori=N,N—1,...,0

forl=1,2,...,p

select (randomly) r,s,t € {1,2,...,p} and k*€ {1,2,...,n}

fork=1,2,...n

if (k= k" or ran(0,1) < ¢) then

ah= oyl)

n_ .(ptmi) (p+s,1) _ (p+t,i)
Tp= Ty +(zy, —Iy, J
ensure u,;i <z, zl < u,':ﬂ) (or other feasibility handling)
else
l,i p+l,i
R
endif
end

let y'= f(z}, ..., o)) and y"= f(z},...,z!)
if ' < "D substitute (1, ..., 2,) D with (2, ...,27,) (min)
if " > y®P+b) substitute (1, ..., 2,)P4 with (2, ...,2”) (max)

n
update the values {v;, v;r, f;,f;rb =0,...,1} if ¥ or y” are better
end
end

end

11

5 Computational results

The two algorithms SPDE and MPDE have been implemented using C++ and
Matlab and executed on a set of test functions with different dimension n =
2,4,8,16,32.

The problems are taken from the references [2], [5], [6], [7], [8], [9], [11], [12],

[14].

The first 20 problems are of dimension n = 2:

Problem 1: f(z1,22) = x5 cos(mz1) over the support (z1,z2) € [0,5] x
[1,5]

Problem 2:f(z1,x2) = o322 over the support (z1,x2) € [0,5] x [1, 5]

Function f(z1,z2) of Problem 1. Function f(z1,z2) of Problem 2.

Problem 3: f(x1,22) = xo+x1 /22 over the support (z1, z2) € [0,5] x[1, 5]

Problem 4: f(z1,72) = +/(z1 —0.1)* + (z2 — 0.1)* over the support
(1‘1,1}2) S [—2,2]2

12

Function f(z1,x2) of Problem 3. Function f(z1,z2) of Problem 4.

Problem 5: f(z1,22) = 0.2+(m1_2)14+(z2_2)2 over the support (z1,22) €
[0,5] x [1,5]

Problem 6: f(z1,z2) = 1+ %9:1 + sin(2z1 — 7/2) + 2 cos(x2) over the
support (21, x9) € [~2,2]?

Function f(z1,x2) of Problem 5. Function f(z1,22) of Problem 6.

Problem 7: f(x1,72) = (2% — x2)? + 0.01(1 — 21)? over the support
(1’1,.’132) S [—2,2]2

Problem 8: f(z1,22) = (1 — /23 + #3)sin(n(x1 + 5)) over the support
(:L‘l,CL‘Q) S [—1,1] X [—2,2]

13

Function f(x1,x2) of Problem 7. Function f(z1,z2) of Problem 8.

Problem 9: f(z1,22) = 20 cos(z1+x2)—23—x3 over the support (z1,z2) €
[_47 4]2

Problem 10: f(z1,22) = 3(1 — x1)%eap(—2? — (z2 + 1)?) —10(3zy — 2§ —

od)exp(—2? — 23) —exp(—z3 — (1 + 21)?)/3 over the support (xy,z2) €
[_3’3] X [_2’2]

b A NVonNao e

Function f(x1,22) of Problem 9. Function f(x1,z2) of Problem 10.

Problem 11: f(z1,z2) = exp(—2.1z1 — 0.3)exp(—2.222 — 0.7) over the
support (z1,22) € [0,2] x [—1,0]

Problem 12: f(x1,2) = cos(2z; + sin(xz)) + cos(z2) — 0.1(z? + 23) over
the support (z1,x2) € [—4,4]2

14

Function f(z1,22) of Problem 11. Function f(z1,22) of Problem 12.

Problem 13: f(z1,72) = exp(—2? — 0.1z3) over the support (z1,z3) €
[_1’ 1]2

Problem 14: f(x1,z2) = 20+ e — 20exp(—0.2(2? + 22) /4) —exp((cos(2mz1) +
cos(2mx2))/4) over the support (z1,72) € [~1, 3]

Function f(x1,z2) of Problem 13. Function f(x1,22) of Problem 14.

Problem 15: f(z1,x2) = (bz1/m — % + 22 — 6)% + 10(1 — &)cos(zy) +
10 over the support (z1,x2) € [0, 10]

Problem 16: f(z1,22) = 2? — 10cos(2rx1) + 10 + 23 — 10cos(27wx2) + 10
over the support (z1,22) € [0, 3]?

15

Function f(x1,z2) of Problem 15. Function f(z1,x2) of Problem 16.

Problem 17: f(z1,22) = 1/0.72“190170.7)2 1/1.32(;270.3)2 over the support
([L‘1,.’L‘2) S [—1,1]2

Problem 18: f(z1,22) =
[0,1)

(1+0.7m21+1.3zz)3 over the support (z1,z2) €

Function f(z1,x2) of Problem 17. Function f(z1,22) of Problem 18.

Problem 19: f(z1,22) = exp[—(0.7(z1 —0.7))%2 — (1.3(z2—0.3))?] over the
support (z1,72) € [—1,1]?

Problem 20: f(z1,22) = 100(xe — 23)? + (21 — 1)? over the support
(21, 22) € [0.1,0.1] x [~0.2,0.2]

16

01 "go

Function f(x1,z2) of Problem 19. Function f(z1,z2) of Problem 20.

The six problems of the second group have dimension n = 4.
4
Problem 21: f(zy,...,x,) = > [2? — 10 cos(27z;) + 10] over the support
x; € [0,3]

i=1

4
Problem 22: f(z1,...,x4) = [(¢; 2+ (zi—w;)?)~* with ¢ = (0.8,1.5,2.3,2.43)

4
i=1

and w = (0.2,0.4,0.3,0.1) over the support z; € [—1,1]*

Problem 23: f(z1,...,24) = (1+i cizy) (™) with ¢ = (0.8,1.5,2.3,2.43)
over the support x; € [0, 1]* =

Problem 24: f(z1,...,x4) = exp(— icf(mi—wi)% with ¢ = (0.8, 1.5,2.3,2.43)

over the support z; € [—1,1]*

=1

4 4

Problem 25: f(x1,...,24) = 20 + ¢ — 20 exp l—0.2 > xf] —exp [411 > cos(27r:vi)}
over the support (z1,z2) € [-1,3]*

Problem 26: f(z1,...,z4) = Y [10(@ip1 — 23)? + (z; — 1)?] over the

i=1

support z; € [—0.2,0.2]%.

The last three groups contain problems of dimension n = 8, n = 16 and
n = 32 respectively.

They are constructed by the Rastrigin function, the Ackley function and a
modified Rosenbrock function:

n
1. Rastrigin: f(zy,...,z,) = > [2? — 10cos(27z;) + 10], z; € [0, 3];
=1

3

i=1 i=1

2. Ackley: f =20+ e — 20 exp [—0.2 LN 22| —exp [% > cos(27rxi)] , Ty €

[_173];

17

3. Modified Rosenbrock: f(z4,...,z,,) :T‘Lil [10(wis1 — 22)* + (z; — 1)?] ,a; €
[—0.2,0.2]. =

Problem 27: Rastrigin function with n = 8.

Problem 28: Ackley function with n = 8.

Problem 29: Modofied Rosenbrock function with n = 8.

Problem 30: Rastrigin function with n = 16.

Problem 31: Ackley function with n = 16.

Problem 32: Modofied Rosenbrock function with n = 16.

Problem 33: Rastrigin function with n = 32.

Problem 34: Ackley function with n = 32.

Problem 35: Modofied Rosenbrock function with n = 32.

In the computations, the input fuzzy numbers are triangular and symmetric

of the form u; = (a;, “Fb b;) with support given by the interval [a;, b;]; the

applied supports are illustrated in the table.

The extension algorithm is used in combinations with the LU-fuzzy repre-
sentation for differentiable membership functions (and differentiable extended
functions) and the number N + 1 of a — cuts (and correspondingly of min/max
optimizations) can be sufficiently small. Experiments in [5] and [12] motivated
that V =5 is in general quite sufficient to obtain very good approximations.

In the present tests, N = 10 is used.

The figures here illustrate the LU-fuzzy extensions obtained by the two al-
gorithms.

Fuzzy extension of problem 1 Fuzzy extension of problem 2

18

Fuzzy extension of problem 3

Fuzzy extension of problem 5

Fuzzy extension of problem 7

Fuzzy extension of problem 4

Fuzzy extension of problem 6

Fuzzy extension of problem 8

19

.
Fuzzy extension of problem 9 Fuzzy extension of problem 10
AN T T
Fuzzy extension of problem 11 Fuzzy extension of problem 12
bz o 7 7 0 0 10 2 1

Fuzzy extension of problem 13 Fuzzy extension of problem 14

20

Fuzzy extension of problem 15

Fuzzy extension of problem 17

Fuzzy extension of problem 19

Fuzzy extension of problem 16

Fuzzy extension of problem 18

Fuzzy extension of problem 20

Fuzzy extension of problem 21

Fuzzy extension of problem 23

Fuzzy extension of problem 25

Fuzzy extension of problem 22

Fuzzy extension of problem 24

Fuzzy extension of problem 26

21

22

Fuzzy extension of problem 27

Fuzzy extension of problem 29

Fuzzy extension of problem 31

Fuzzy extension of problem 28

Fuzzy extension of problem 30

Fuzzy extension of problem 32

23

Fuzzy extension of problem 33 Fuzzy extension of problem 34

Fuzzy extension of problem 35

The table below reports the number of function evaluations FEgppg and
FE)ppr needed to the two algorithms SPDFE and M PDE to reach the solution
of the nested min/max optimization problems corresponding to the 11 o — cuts

of the uniform a—decomposition a; = %, i=0,1,...,10 (N = 10 subintervals).

To decide that a solution is found, we use the following simple rule: choose
a fixed tolerance tol ~ 1073, 107* and a number § ~ 20,30 of generations; if
for g subsequent iterations all the values v; and v;r are changed less than tol,
then the procedure stops and the found solution is assumed to be optimal. In
any case, no more than 500 iterations are performed (but this limit was never
reached during the computations).

24

’PTOblem‘n‘FESPDE‘FEMPDE‘PTOblem‘ n ‘FESPDE‘FEJ\IPDE‘

1 2(15400 8800 19 2| 11880 6820
2 2112760 7260 20 2| 11440 6600
3 2]11880 6820 21 4| 40040 32560
4 2112760 6380 22 4| 31240 22000
5 2116280 6600 23 4| 15840 15840
6 2112760 6380 24 4| 19360 14520
7 2112320 5720 25 4| 27720 16280
8 2{11000 5500 26 4| 19360 18920
9 2116720 7040 27 8| 72160 47520
10 2(18920 10560 28 8| 51392 25344
11 2113640 7700 29 8| 20416 19712
12 2(13200 8140 30 |16] 292160 | 186560
13 2]10120 5280 31 16| 255552 | 98560
14 2]16280 6380 32 |16 59136 63360
15 2116280 7920 33 |32] 1122176 | 560384
16 2123760 9020 34 |32| 283008 | 252032
17 2]11880 6600 35 |32| 250624 | 243584
18 2(11880 6600

The figure below represents the logarithm of the number of function eval-
uations vs the logarithm of the number n of arguments. It appears an almost
linear relationship In(FEsppr) = a + bln(n) and In(FEyppr) = ¢+ dIn(n) :
the estimated coefficients are a = 8.615,b = 1.20 and ¢ = 7.869,d = 1.34. The
computational complexity of the proposed algorithms (on average for the 22
test problems) grows less then quadratically with the dimension n (SPDE is less
efficient but grows slowly than MPDE). This is an interesting result, as all the
existing methods for the fuzzy extension of functions are essentially exponential
in n.

The C++ source codes are available on request to the author; also a MatLab
implementation is available.

16
& SPDE ‘
14 | e MPDE

12
10 + ry

(X

In(n)

25

References
1. H. K. Chen, W. K. Hsu, W. L. Chiang, A comparison of vertex method with JHE
method, Fuzzy Sets and Systems, 95, 1998, 201-214.
2. K. Deb, An efficient constraint handling method for genetic algorithms, Computer
methods in applied mechanics and engineering, 186, 2000, 311-338.
3. W. M. Dong, H. C. Shah, Vertex method for computing functions of fuzzy variables,
Fuzzy Sets and Systems, 24, 1987, 65-78.
4. D. Dubois, H. Prade (ed), Fundamentals of Fuzzy Sets, Kluwer, Boston, The Hand-
books of Fuzzy Sets Series, 2000.
5. M. L. Guerra, L. Stefanini, Approximate Fuzzy Arithmetic Operations Using
Monotonic Interpolations, Fuzzy Sets and Systems, 150, 2005, 5-33.
6. M. Hanss, The transformation method for the simulation and analysis of systems
with uncertain parameters, Fuzzy Sets and Systems, 130, 2002, 277-289.
7. M. Hanss, A. Klimke, On the reliability of the influence measure in the transfor-
mation method of fuzzy arithmetic, Fuzzy Sets and Systems, 143, 2004, 371-390.
8. A. Klimke, An efficient implementation of the transformation method of fuzzy
arithmetic, Extended Preprint Report, 2003/009, Institut of Applied Analysis and
Numerical Simulation, University of Stuttgard, Germany, 2003.
9. A. Klimke, B. Wohlmuth, Computing expensive multivariate functions of fuzzy
numbers using sparse grids, Fuzzy Sets and Systems, 153, 2005, 432-453.
10. E. N. Otto, A. D. Lewis, E. K. Antonsson, Approximating o — cuts with the vertex
method, Fuzzy Sets and Systems, 55, 1993, 43-50.
11. K. Price, An introduction to differential evolution, in D. Corne, M. Dorigo, F.
Glover (ed.), New Ideas in Optimization, McGraw Hill, 1999, 79-108.
12. L. Stefanini, L. Sorini, M. L. Guerra, Parametric representation of fuzzy numbers
and application to fuzzy calculus, Fuzzy Sets and Systems, 157, 2006, 2423 — 2455.
13. R. Storn, K. Price, Differential Evolution: a simple and efficient heuristic for global
optimization over continuous spaces, ICSI technical report TR-95-012, Berkeley
University, 1995. Also, Journal of Global Optimization, 11, 1997, 341-359.
14. R. Storn, System design by constraint adaptation and differential evolution, IEFE
Transactions on Evolutionary Computation, 3, 1999, 22-34.
15. K. L. Wood, K. N. Otto, E. K. Antonsson, Engineering design calculations with
fuzzy parameters, Fuzzy Sets and Systems, 52, 1992, 1-20.
16. L. A. Zadeh, Fuzzy Sets, Information and Control, 8, 1965, 338-353.

APPENDI X 1
Matl ab | nmpl enentation of the Single Population DE Al gorithm SPDE

function [fU nGen, nfe] = ...
FuzzySPDE(f nane, D, Extra, N, U, Pf act, strategy, reiter, repl ot, maxGen, gTol , noGen)
% Fuzzy Extension of a D-dinensional function defined by
% f(x) = fname(x, D, Extra, k),
% using the Single Population differential evolution (SPDE) al gorithm
% The D-di mensional fuzzy argument U and result fU are in LU-fuzzy format:

% U = (Um dUm Up, dUp; i =1: N+1) over N uniform al pha's subintervals
% in 3-dinmensional matrix form

% U(i =1: N+1;j =1: D; k=1: 4)

% wher e i is the index of al pha-cut corresponding to

% alpha(i) = (i-1)/N. (i starts from1l to N+1)

% j is the index of a conponent of U

% k is 1 for Un 2 for dum 3 for Up, 4 for dUp

% so that U(i,j,:) are the four LU fuzzy paraneters
% defining U(j) at i-th al pha-cut

% fuU = (fUmdf Um f Up, df Up; i =1: N\#1) over N uniform al pha's subintervals
% so that fU(i,:) are the four LU fuzzy paraneters defining
% f(U at i-th al pha-cut

%

% Qut put :

% fu Fuzzy Extended value f(U) in LU-fuzzy form

% nf nunber of function eval uati ons needed

%

% | nput s:

% f nane string namng a function f(x,y) to mnimze

% D nunber of paranmeters of the function

% Extra vector of extra values eventually needed to cal culate f(x)
% Pf act factor for the number NP = Pfact*D of popul ati on nmenbers
% maxGen maxi mum nunber of generations (>= 200)

%
% Val ue function f(x) has to be defined by the user
% define fname. m as

% function fv = fname(x, D, Extra, k)

% fv = function value f at x if k=0

% fv = partial first derivative of f at x wt x(k) if k=1:D
% end

%
% Internal |nportant Paraneters:

% F DE-stepsize (in [0, 2])

% CR crossover probability (in [0, 1])

% strategy 1 --> DE/ best/1/exp 6 --> DE/ best/1/bin

% 2 --> DE/rand/ 1/ exp 7 --> DE/rand/ 1/ bin

% 3 --> DE/rand-to-best/ 1/ exp 8 --> DE/rand-to-best/1/bin
% 4 --> DE/ best/ 2/ exp 9 --> DE/ best/2/bin

% 5 --> DE/rand/ 2/ exp el se DE/rand/2/bin

% reiter intermedi ate output will be produced after "reiter"

% iterations. No internediate output will be produced

% if reiter is <1

% repl ot sane as for reiter, to plot the popul ations of level k=1
%

% Not es:

% The code is adapted from

% function devec3, (1997), by R Storn (ICSI, Berkeley)

% author: Luciano Stefanini, University of Ubino, Italy, 2006.

% lucste@mniurb.it

% A good initial guess is to choose F frominterval [0.5, 1],

% the crossover probability CR frominterval [0, 1] helps to naintain
% the diversity of the population and is rather uncritical. The

% nunber of popul ation menbers NP is also not very critical. A

% good initial guess is 10*D. Depending on the difficulty of the

% probl em NP can be | ower than 10*D or nust be hi gher than 10*D

% to achi eve convergence.

% If the paraneters are correl ated, high values of CR work better.
% The reverse is true for no correl ation.

%

% This programis free software; you can redistribute and/or nodify it.
%It is distributed in the hope that it will be useful,

% but W THOUT ANY WARRANTY; w thout even the inplied warranty of

% MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

% GNU Ceneral Public License for nore details.

% defaul t val ues:
NP = Pfact *D;

F = 0.8;

CR = 0.5;

if (NP < 5)
NP=5;

end

if (maxGen <= 0)
maxGen = 200;

end

reiter floor(reiter);

repl ot floor(replot);

if (D<2 || D>2)
replot = O;

Al

end

% lInitialize arrays

Un = zeros(N+1,D);
Up = zeros(N+1,D);
dUm = zeros(N+1, D);
dUp = zeros(N+1, D);
for k=1:N+1
for j=1:D
Unr(k,j) = WUk,j,1);
Un(k,j) = WKk,j,3);
dun(k, j) = Wk,j,2);
dup(k,j) = Uk, j,4);
end
end

fU = zeros(N+1,4);

pop = zeros(2*NP, D);

bm nval = zeros(1, N+1);

brmexval = zeros(1, N+1);

mnnemt = zeros(1,D);

m nnem = zeros(N+1,D);

maxnemt = zeros(1,D);

maxnmem = zeros(N+1, D);

val = zeros(1,2*NP);

I x = zeros(1,D);

ux = zeros(1,D);

t npx = zeros(1,D);

% popul ations 1 to NP for |ower branch and NP+1 to 2NP for upper branch
nfe = 0; % nunmber of function eval uations
nGen = 0;

for k = (N+1):-1:1

I x reshape(Um(k,:),1,D);
ux reshape(Up(k,:),1,D);
for i=1:2*NP
pop(i,:) = 1Ix + rand(1,D).*(ux - Ix);

end
if k < N+1
pop(1,:) = mnmen(k+1,:);
pop(NP+1,:) = maxmen(k+1,:);
end

% Eval uate initial populations
for i=1:2*NP
tmpx = pop(i,:);
val (i) = feval (fnane, tnpx, D, Extra, 0);

nfe = nfe + 1;
end
% identify best initial values for each cut
imn = 1;
i max = 1;
m nval = val (1);
maxval = val (1);
for i=2:2*NP
if (val (i) < mnval)
imn =i
mnval = val (i);
end
if (val (i) > maxval)
i max =i

maxval val (i);

end

end
bm nval (k) = mnval; % best min val ue ever
brmaxval (k) = maxval ; % best nmax val ue ever
m nem t = pop(imn,:); % best min menmber of current iteration
m nval it = mnval; % best min value of current iteration
m nnmen(k, :) = mnnemt; % best m n menber ever
maxnmem t = pop(imex,:); % best max menber of current iteration
maxval it = maxval ; % best nmax val ue of current iteration
maxnmen(k, :) = maxnemt; % best max menber ever
% ----- popold is the popul ation which has to conpete. It is--------
% ----- static through one iteration. pop is the newly--------------
% ----- enmerging popul ati on. - ------ oo oo
popold = zeros(NP, D); % t oggl e popul ati ons
pmL = zeros(NP, D); % initialize population matrix 1
pn2 = zeros(NP, D); %initialize population matrix 2
pn8 = zeros(NP, D); % initialize population matrix 3
pmd = zeros(NP, D); %initialize population matrix 4
pnb = zeros(NP, D); % initialize population matrix 5
bm = zeros(NP,D); %initialize bestmenber nmatrix
ui = zeros(NP, D) ; % i nternedi at e popul ati on of perturbed vectors
mui = zeros(NP, D); % mask for internediate popul ation
mpo = zeros(NP, D); % mask for ol d popul ation
rot = (0:1:NP-1); %rotating index array (size NP)
rotd= (0:1:D-1); % rotating index array (size D)
rt = zeros(NP); % anot her rotating index array
rtd = zeros(D); % rotating index array for exponential crossover
al = zeros(NP); % i ndex array
a2 = zeros(NP); % i ndex array
a3 = zeros(NP); % i ndex array
a4 = zeros(NP); % i ndex array
ab = zeros(NP); % i ndex array
ind = zeros(4);
iter = 1;
novValid = 0;
while ((iter <= maxGen) & (noValid < noGen))
improved = 0;
ind = randperm(4); % i ndex pointer array
al = randperm NP); % shuffle | ocations of vectors
rt = rem(rot+ind(1l), NP); %rotate indices by ind(1l) positions
a2 = al(rt+1); % rotate vector |ocations
rt = rem(rot+ind(2), NP);
a3 = a2(rt+l);
rt = rem(rot+ind(3), NP);
a4 = a3(rt+l);
rt = rem(rot+ind(4), NP);
a5 = a4(rt+l);
% process | ower branches, nested M n probl ens
for i=1:NP
popol d(i,:) = pop(i,:); %save the old popul ation
end
pml = popold(al,:); % shuffl ed population 1
pn2 = popol d(az,:); % shuffl ed popul ation 2
pn8 = popol d(a3,:); % shuffl ed popul ation 3
pmd = popol d(a4,:); % shuffl ed popul ation 4
pnb = popol d(a5,:); % shuffl ed population 5
for i=1:NP % popul ation filled with best menber of last iteration
for j=1:D
br(i,j) = mnmemt(j);
end
end
mui = rand(NP,D) < CR;, % all random nunbers < CR are 1, O otherw se
if (strategy > 5)
st = strategy-5; % bi nom al crossover
el se
st = strategy; % exponenti al crossover
mui =sort(mui'); % transpose, collect 1's in each colum
for i=1:NP
n=fl oor (rand*D);
ifn>0
rtd = rem(rotd+n, D);

mi (:,i0)

mui (rtd+1,i);

% otate colum i by n

end

end

mi = mi'; % transpose back
end
mpo = mui < 0.5; % i nverse mask to mui
if (st ==1) % DE/ best/ 1

ui = bm+ F*(pmL - pnR);

ui = popold.*npo + ui.*nui;

elseif (st == 2) % DE/ rand/ 1
ui pm8 + F*(pnl - pnR);
ui popol d. *nmpo + ui . *nui;
elseif (st == 3) % DE/ rand-to-best/1
ui popold + F*(bm popold) + F*(pnl - pnR);
ui popol d. *npo + ui. *mui;
elseif (st == 4) % DE/ best/ 2
ui bm+ F*(pml - pn2 + pnB - pnd);
ui popol d. *npo + ui . *nui;
elseif (st == 5) % DE/ r and/ 2
ui pnb + F*(pnl - pn2 + pn8 - pmi);
ui popol d. *npo + ui. *nui;
end
% force feasibility of current population for level k
for i=1:NP

for j=1:D
if Cui(ing) < Ix(j))
ui (i,j) = 1x(j);
end
if (Cui(ij) >ux(j))
ui (i, j) = ux(j);
end
end

end

if (replot > 0)
if (rem(iter,replot) == 0 && k==1)

figure(3);

xpl ot = zeros(NP);

ypl ot = zeros(NP);

xpl ot = reshape(ui (:,1),1, NP);

ypl ot reshape(ui(:,2),1,NP);
subplot(1,1,1);
pl ot (xplot,yplot, or');
drawnow, % --Draws current graph now
end
end

% Sel ect which vectors are allowed to enter the new mn popul ation
for i=1:NP
tnpx = ui(i,:);
tenpval = feval (fnane, tnpx, D, Extra, 0); % check cost of conpetitor
nfe = nfe + 1;
if (bmnval (k) > tenpval)
if (tenmpval + gTol < bminval (k))
improved = 1;
end
bm nval (k) = tenpval;
m nmen(k, :) = tnpx;

end

if (tempval < val(i)) %if conpetitor is better
pop(i,:) = tnpx; % replace old vector (for new iteration)
val (i) = tenpval ;

end

if (bmaxval (k) < tenpval)
if (tempval - gTol > bmaxval (Kk))
inmproved = 1;
end
bmaxval (k) = tenpval;
maxnmen(k, :) = tnpx;

end
if (tenmpval > val (NP+i)) % if conpetitor is better
pop(NP+i,:) = tnpx; % replace old vector (for new iteration)
val (NP+i) = tenpval ;
end
end % end for menber i=1:NP

% process upper branches, nested Max probl ens
for i=1:NP
popol d(i,:) = pop(NP+i,:); %save the old popul ation

pmL = popol d(al,:); % shuffled population 1
pn2 = popold(az,:); % shuffl ed popul ation 2
pnm8 = popold(a3,:); % shuffl ed popul ation 3
pmd = popol d(a4,:); % shuffl ed popul ation 4
pnb = popol d(a5, :); % shuffl ed population 5
for i=1:.NP % popul ation filled with the best nenber
for j=1:D
brm(i,j) = maxmenmit(j);
end
end
mui = rand(NP, D) < CR % all random nunmbers < CR are 1, O otherw se
if (strategy > 5)
st = strategy-5; % bi nom al crossover
el se
st = strategy; % exponenti al crossover
mui =sort(mui'); % transpose, collect 1's in each colum
for i=1:NP
n=f | oor (rand*D);
ifn>0
rtd = rem(rotd+n, D);
mui (:,i) = mui(rtd+1,i); %otate colum i by n
end
end
mi = mi'; % transpose back
end
mpo = mui < 0.5; % i nverse mask to mui
if (st ==1) % DE/ best/ 1
ui = bm+ F(pmlL - pnR);
ui = popold.*nmpo + ui.*nui;

elseif (st == 2) % DE/ r and/ 1
ui pnm8 + F*(pnl - pnR);
ui popol d. *npo + ui . *nui;
elseif (st == 3) % DE/ rand-t o-best/1
ui popold + F*(bm popold) + F*(pnl - pnR);
ui popol d. *nmpo + ui . *nui;
elseif (st == 4) % DE/ best /2
ui bm+ F*(pnl - pnR2 + pn8 - pmi);
ui popol d. *nmpo + ui. *mui ;
elseif (st == 5) % DE/ r and/ 2

ui = pnb + F*(prl - pn2 + pnB8 - prm4);
ui = popold.*npo + ui.*nui;
end
% force feasibility of current population for |evel k
for i=1:NP
for j=1:D
if Cui(ing) <Ix())
ui (7)) = 1x(j);
end
if Cui(ing) >ux(j))
ui (i,j) = ux(j);
end
end
end

if (replot > 0)
if (rem(iter,replot) == 0 && k==1)

figure(4);

xpl ot = zeros(NP);

ypl ot = zeros(NP);

xpl ot = reshape(ui (:,1),1, NP);

ypl ot reshape(ui (:,2),1,NP);
subplot(1,1,1);
pl ot (xpl ot, yplot, ' ob");
drawnow, % --Draws current graph now
end
end

% Sel ect which vectors are allowed to enter the new max popul ation
for i=1:NP
tmpx = ui(i,:);
tenpval = feval (fname, tnpx, D, Extra, 0); % check cost of conpetitor
nfe = nfe + 1;
if (bmaxval (k) < tempval)
if (tempval - gTol > bmaxval (k))
improved = 1;
end
brmexval (k) = tenpval;
maxmen(k, :) = tnpx;

end
if (tempval > val (NP+i)) %if conpetitor is better
pop(NP+i, :) = tnpx; % replace old vector (for new iteration)
val (NP+i) = tenpval ;
end
if (bmnval (k) > tenpval)
if (tempval + gTol < bm nval (k))
improved = 1;
end
bm nval (k) = tenpval;
m nmen(k, :) = tnpx;

end
if (tempval < val(i)) %if conpetitor is better
pop(i,:) = tnpx; % replace old vector (for new iteration)
val (i) = tenpval ;
end
end % end for menber i=1:NP

maxnmem t (k,:) = maxmem(k,:); % freeze the best nmenber of this iteration for the coning
%iteration. This is needed for sone of the strategies.

mnmemt(k,:) = mnmemk,:); %freeze the best nenber of this iteration for the coming
%iteration. This is needed for sone of the strategies.

% | nt ermedi at e Qut put section
if (reiter > 0)
if (rem(iter,reiter) == 0)
fprintf(1,'\nCGeneration: %, Function Evaluations: %l\n',iter, nfe);
fprintf(1,'Level: %, BestMn: %, BestMax: %\n', k-1, bm nval (k), bmaxval (k));
end
end
% next generation
novValid = novValid + 1;
if (inproved == 1)
noValid = O;
end
iter = iter + 1;
end
if nGn <iter - 1
nGen = iter-1;
end

end % next | evel

% Construct result fuzzy nunber fU

iter = 1;
while (iter > 0)
iter = 0;
for k = 1:N
if (bmnval (k+1) < bmnval (k))
iter = 1;
bm nval (k) = bm nval (k+1);
mnmen(k,:) = mnmen(k+1,:);
end
if (bmaxval (k+1) > bnaxval (k))
iter = 1;
bmaxval (k) = bmaxval (k+1);
maxmen(k, :) = maxmen(k+1,:);
end
end
end

Tol Bound = 0. 0001;

for k=1:Nt+1
dlval = 0.0;
Ival = bm nval (k);
tmpx = mnmem(k, :);
for j=1:D
go=0;
if (tmpx(j) < Umk,j) + Tol Bound)
go = go+l;
end
if (trmpx(j) > Up(k,j) - Tol Bound)
go = go+2;
end
if (go>0)

dval = feval (fnane,tnpx, D, Extra,j);
if (go == 1)

dival = dlval + dval * dum(k,j);
elseif (go == 2)
dival = dlval + dval * dUp(k,j);
elseif (go == 3)
if (dval > 0.0)
dival = dlval + dval *dUnm(k,j);
el se
dlval = dlval + dval *dUp(k,j);
end
end
end
if dival <0
dlval = 0;
end
end
duval = 0.0;
uval = bmaxval (k) ;
tnpx = maxmenm(k, :);
for j=1:D
go=0;
if (tmpx(j) > Umk,j) - Tol Bound)
go = go+2;
end
if (tmpx(j) < Up(k,j) + Tol Bound)
go = go+l;
end
if (go>0)
dval = feval (fnane,tnpx, D, Extra,j);
if (go == 1)
duval = duval + dval * dum(k,j):
elseif (go == 2)
duval = duval + dval * dUp(k,j);
elseif (go == 3)
if (dval > 0.0)
duval = duval + dval *dUp(k,j);
el se
duval = duval + dval *dUnr(k,j);
end
end
end
if duval > 0
duval = 0;
end
end
fUk,1) = lval;
fUk,2) = dlval;
fUk,3) = wuval;
fuk,4) = duval;
end
for k=1:N
if fUk,1) == fU(k+1, 1)
fUuk,2) = 0;
fU(k+1,2) = 0O;
end
if fUk,3) == fUk+1, 3)
fU(k,4) = 0;
fU(k+1,4) = 0;
end

end

APPENDI X 2
Matl ab | nmpl enentation of the Multiple Populations DE Al gorithm MPDE

function [fU nGen, nfe, nvc] = ...
FuzzyMPDE(f nane, D, Extra, N, U, Pfact, strat egy, reiter, repl ot, maxGen, gTol , noGen)
% Fuzzy Extension of a D-dinensional function defined by
% f(x) = fname(x, D, Extra, k),
% using the Single Population differential evolution (SPDE) al gorithm
% The D-di mensional fuzzy argument U and result fU are in LU-fuzzy format:

% U = (Um dUm Up, dUp; i =1: N+1) over N uniform al pha's subintervals
% in 3-dinmensional matrix form

% U(i =1: N+1;j =1: D; k=1: 4)

% wher e i is the index of al pha-cut corresponding to

% alpha(i) = (i-1)/N. (i starts from1l to N+1)

% j is the index of a conponent of U

% k is 1 for Un 2 for dum 3 for Up, 4 for dUp

% so that U(i,j,:) are the four LU fuzzy paraneters
% defining U(j) at i-th al pha-cut

% fuU = (fUmdf Um f Up, df Up; i =1: N\#1) over N uniform al pha's subintervals
% so that fU(i,:) are the four LU fuzzy paraneters defining
% f(U at i-th al pha-cut

%

% Qut put :

% fu Fuzzy Extended value f(U) in LU-fuzzy form

% nf nunber of function eval uati ons needed

%

% | nput s:

% f nane string namng a function f(x,y) to mnimze

% D nunber of paranmeters of the function

% Extra vector of extra values eventually needed to cal culate f(x)
% Pf act factor for the number NP = Pfact*D of popul ati on nmenbers
% maxGen maxi mum nunber of generations (>= 200)

%
% Val ue function f(x) has to be defined by the user
% define fname. m as

% function fv = fname(x, D, Extra, k)

% fv = function value f at x if k=0

% fv = partial first derivative of f at x wt x(k) if k=1:D
% end

%
% Internal |nportant Paraneters:

% F DE-stepsize (in [0, 2])

% CR crossover probability (in [0, 1])

% strategy 1 --> DE/ best/1/exp 6 --> DE/ best/1/bin

% 2 --> DE/rand/ 1/ exp 7 --> DE/rand/ 1/ bin

% 3 --> DE/rand-to-best/ 1/ exp 8 --> DE/rand-to-best/1/bin
% 4 --> DE/ best/ 2/ exp 9 --> DE/ best/2/bin

% 5 --> DE/rand/ 2/ exp el se DE/rand/2/bin

% reiter intermedi ate output will be produced after "reiter"

% iterations. No internediate output will be produced

% if reiter is <1

% repl ot sane as for reiter, to plot the popul ations of level k=1
%

% Not es:

% The code is adapted from

% function devec3, (1997), by R Storn (ICSI, Berkeley)

% author: Luciano Stefanini, University of Ubino, Italy, 2006.

% lucste@mniurb.it

% A good initial guess is to choose F frominterval [0.5, 1],

% the crossover probability CR frominterval [0, 1] helps to naintain
% the diversity of the population and is rather uncritical. The

% nunber of popul ation menbers NP is also not very critical. A

% good initial guess is 10*D. Depending on the difficulty of the

% probl em NP can be | ower than 10*D or nust be hi gher than 10*D

% to achi eve convergence.

% If the paraneters are correl ated, high values of CR work better.
% The reverse is true for no correl ation.

%

% This programis free software; you can redistribute and/or nodify it.
%It is distributed in the hope that it will be useful,

% but W THOUT ANY WARRANTY; w thout even the inplied warranty of

% MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

% GNU Ceneral Public License for nore details.

% defaul t val ues:
NP = Pfact *D;

F = 0.8;

CR = 0.5;

if (NP < 5)
NP=5;

end

if (maxGen <= 0)
maxGen = 200;

end

reiter floor(reiter);

repl ot floor(replot);

if (D<2 || D>2)
replot = O;

Al

end

% lInitialize arrays

Un = zeros(N+1,D);
Up = zeros(N+1,D);
dUm = zeros(N+1, D);
dUp = zeros(N+1, D);
for k=1:N+1
for j=1:D
Unr(k,j) = WUk,j,1);
Un(k,j) = WKk,j,3);
dun(k, j) = Wk,j,2);
dup(k,j) = Uk, j,4);
end
end

fU = zeros(N+1,4);

pop = zeros(2*NP, N+1, D);
bm nval = zeros(1, N+1);
brmaxval = zeros(1, N+1);
Ix = zeros(1,D);
ux = zeros(1,D);
% popul ations 1 to NP for |ower branch and NP+1 to 2NP for upper branch
for k=1:N+1

Ix = reshape(Umnk,:),1,D);

ux = reshape(Up(k,:),1,D);

for i=1:2*NP

pop(i,k,:) =1x + rand(1,D).*(ux - Ix);

end
end
nfe = 0; % nunber of function eval uations
nvcr oss = 0; % nunber of valid inprovenent across |evels
% Eval uate initial populations
t npx = zeros(1,D);
for k=1:N+1
for i=1:2*NP
tmpx = reshape(pop(i,k,:),1,D;
val (i,k) = feval (fnane, tmpx, D, Extra, 0);
nfe = nfe + 1;
end
end
% identify best initial values for each cut
for k=1:N+1
imn = 1;
i max =1,
km n = k;
kmax = k;
m nval = val (1, Kk);
maxval = val (1, k);
for kk=1:N+1

for i=1:2*NP
%test if pop(i,kk,:) is feasible for level k
feas = 1;
if (kk < k)
for j=1:D
if ((pop(i,kk,j)<un(k,j)) [(pop(i,kk,j)>Up(k,j)))
feas = 0;
end
end
end
if (feas == 1) %if yes, use to find mn and max

if (vaI(i,kk)_< m nval)

imn =i
km n = kk;
m nval = val (i, kk);
end
if (val (i, kk) > naxval)
i max =1i;
kmax = kk;
maxval = val (i, kk);
end
end
end
end
bm nval (k) = mnval; % best nmin val ue ever
brmaxval (k) = maxval ; % best max val ue ever
mnnemt(k,:) = pop(imn,kmn,:); %best mn menber of current iteration
m nval it (k) = mnval; % best mn value of current iteration
m nmen(k, :) = mnmemt(k,:); % best min menber ever
maxnmem t (k,:) = pop(imax, kmax, :); % best max menmber of current iteration
maxval it (k) = maxval ; % best max value of current iteration
maxmen(k, :) = maxmem t(k,:); % best max menber ever
end
% ----- popold is the popul ation which has to conpete. It is--------
% ----- static through one iteration. pop is the newly--------------
% ----- emerging population. --------------oo oo
% for mn subpopul ations
popol dmin = zeros(NP, D); % t oggl e popul ati ons
pminin = zeros(NP, D); % initialize population matrix 1
pn2min = zeros(NP, D); %initialize population matrix 2
pnm8min = zeros(NP, D); % initialize population matrix 3
pmdnmin = zeros(NP, D); % initialize population matrix 4
pnbnin = zeros(NP, D); % initialize population matrix 5
bmmn = zeros(NP, D); %initialize bestmenber nmatrix
uimn = zeros(NP,D); % i nternedi at e popul ati on of perturbed vectors
% for max subpopul ations
popol dmax = zeros(NP, D); % t oggl e popul ati ons
pmimax = zeros(NP, D); %initialize population matrix 1
pn2max = zeros(NP, D); %initialize population matrix 2
pnmBmax = zeros(NP, D); % initialize population matrix 3
pmimax = zeros(NP, D); % initialize population matrix 4
pmbmax = zeros(NP, D) ; % initialize population matrix 5
bmmax = zeros(NP, D); %initialize bestmenber nmatrix
uimax = zeros(NP,D); % i nternedi at e popul ati on of perturbed vectors
mui = zeros(NP, D); % mask for internmediate popul ation
mpo = zeros(NP, D); % mask for ol d popul ation
rot = (0:1:NP-1); %rotating index array (size NP)
rotd= (0:1:D-1); % rotating index array (size D)
rt = zeros(NP); % anot her rotating index array
rtd = zeros(D); % rotating index array for exponential crossover
al = zeros(NP); % i ndex array
a2 = zeros(NP); % i ndex array
a3 = zeros(NP); % i ndex array
a4 = zeros(NP); % i ndex array
ab = zeros(NP); % i ndex array
ind = zeros(4);
iter = 1;
novValid = 0;
while ((iter <= maxGen) & (noValid < noGen))
improved = 0;
ind = randperm(4); % i ndex pointer array
al = randperm NP); % shuffle | ocations of vectors
rt = rem(rot+ind(1l), NP); %rotate indices by ind(1l) positions
a2 = al(rt+1); % rotate vector |ocations
rt = rem(rot+ind(2), NP);
a3 = a2(rt+l);
rt = ren(rot+ind(3), NP);
a4 = a3(rt+1);
rt = rem(rot+ind(4), NP);
a5 = a4(rt+l);
for k=1:Nt+1 % for each |evel k=1:Nt+1

% process | ower and upper branches together, nested Mn problens
for i=1:NP

popol dm n(i, :)

pop(i,k,:); % save the old mn popul ation

popol dmax(i,:) = pop(NP+i,k,:); %save the old max popul ati on

end
prmim
prm2m
pn8mi
pmAm
pnbmi
pnilma:
prm2na
pnBma;
pmina
pnbma.

for i=1:NP % popul ation filled with best menber of

n
n
n
n
n
X
X
X
X
X

popol dm n(al,:)
popol dm n(az, :)
popol dm n(a3, :);
popol dm n(a4, :); % shuffl ed popul ati on
popol dm n(a5, :); % shuffl ed popul ati on

)

)

)

)

; % shuffl ed popul ation 1
2

3

4

5

popol dmax(al,:); % shuffled population 1
; 2
; 3
; 4
5

|

; % shuffl ed popul ati on
; % shuffl ed popul ati on

popol dmax(az2, :); % shuffl ed popul ati on
popol dmax(a3, :); % shuffl ed popul ati on
popol dmax(a4, :); % shuffl ed popul ati on
popol dmax (a5, :); % shuffl ed popul ati on
ast

brmin(i,:) = mnmemt(k,:);
)

= maxnmem t (k,:);

iteration

brmmrax(i ,
end
mui = rand(NP,D) < CR;, % all random nunbers < CR are 1, 0 otherw se
if (strategy > 5)
st = strategy-5; % bi nom al crossover
el se
st = strategy; % exponenti al crossover
mui =sort(mui'); % transpose, collect 1's in each col um
for i=1:NP
n=fl oor (rand*D);
ifn>0
rtd = rem(rotd+n, D);
mui (:,i) = mui(rtd+1,i); %otate colum i by n
end
end
mui = mii'; % transpose back
end
mpo = mui < 0.5; % i nverse mask to mnui
if (st ==1) % DE/ best/ 1
uimn = bmin + F*(pmlmin - pn2mn);
uimn = popol dmn. *nmpo + uimn.*nui;
ui max = bmmax + F*(pmlmax - pn2max);
ui max = popol dmax. *npo + ui max. *mui ;
elseif (st == 2) % DE/ rand/ 1
uimn = pnBmn + F*(pmlmn - pn2min);
uimn = popol dmn. *nmpo + uimn.*nui;
ui max = pnBmax + F*(pmlmax - pn2max);
ui max = popol dmax. *npo + ui max. *mui ;
elseif (st == 3) % DE/ rand-to-best/1
uimn = popoldmn + F*(bnmm n-popol dmn) + F*(pmlmn - pn2mn);
uimn = popol dm n.*npo + uimn.*nui;
ui max = popol dmax + F*(bmmax- popol dmax) + F*(pmlmax - pnR2nmax);
ui max = popol dmex. *nmpo + ui max. *mui ;
el seif (st == 4) % DE/ best /2
uimn = bmmn + F*(pmlmin - pn2min + pn8min - pmdmin);
uimn = popol dm n. *nmpo + ui mn. *mnui;
uimax = bmax + F*(pmlmax - pn2max + pnBmax - prmdnex);
ui max = popol dmex. *nmpo + ui max. *mnui ;
elseif (st == 5) % DE/ r and/ 2
uimn = pnbmn + F*(pmlmin - pn2min + pnBmin - pmdmn);
uimin = popol dm n. *nmpo + uimn. *mnui;
ui max = pnbmax + F*(pnmlmax - pn2max + pn8max - pnmdnmax);
ui max = popol dmex. *npo + ui max. *nui ;
end
% force feasibility of current population for |evel k
for i=1:NP
for j=1:D
if (uimn(i,j) < Unk,j))
uimn(i,j) = Uk, j);
end
if (uiminCi,j) > Up(k,j))
uimn(i,j) = Up(k,j);
end
if (uimax(i,j) < Umk,j))
ui max(i,j) = Uk, j);
end
if (uimax(i,j) > Up(k,j))
uimax(i,j) = Up(k,j);
end
end
end

if (replot > 0)

if (rem(iter,replot) == 0 && k==1)

figure(3);

xpl ot = zeros(NP);

ypl ot = zeros(NP);

xpl ot = reshape(uimn(:,1),1,NP);

ypl ot reshape(uimn(:, 2), 1, NP);
subplot(1,1,1);
pl ot (xplot,yplot, or');
drawnow, % --Draws current graph now
figure(4);
xpl ot = reshape(ui max(:,1),1,NP);
ypl ot = reshape(ui max(:,2),1,NP);
subplot(1,1,1);
pl ot (xplot,yplot, or');
drawnow, % --Draws current graph now
end
end

% Sel ect which vectors are allowed to enter the new mi n/max popul ation
for i=1:NP
tnpxmn = uimn(i,:);

tenpval min = feval (fnanme, t npxm n, D, Extra, 0) ; % check cost of conpetitor
nfe = nfe + 1;
t mpxmax = ui max(i,:);
tenpval max = feval (f nane, t npxmax, D, Extra, 0) ; % check cost of conpetitor
nfe = nfe + 1;
for kk=1:N+1 % consider all cuts for which new element is feasible

feasmn = 1;

feasmax = 1;

if (kk > k)

for j=1:D

if (tnpxmin(j) < Un(kk,j) || tmpxmin(j) > Up(kk, j))
feasmn = O;
end
if (tnpxmax(j) < Un(kk,j) || tnpxmax(j) > Up(kk,j))
feasmax = O;
end
end
end
if (feasmn ==
if (bmnval (kk) > tenpval mn)
if (tempval min + gTol < bm nval (kk))
improved = 1;
end
bm nval (kk) = tenpval m n;
m nmen(kk, :) = tnpxmn;
nvcross = nvcross + 1;
end
if (bmaxval (kk) < tenpval m n)
if (tempvalmn - gTol > bmaxval (kk))
improved = 1;
end
bmaxval (kk) = tenpval m n;
maxmen(kk, :) = tnpxmn;
nvcross = nvcross + 1;
end
if (tempvalmn < val (i,kk)) %if conpetitor is better
pop(i, kk,:) = tnpxm n; % replace old vector (for new iteration)
val (i, kk) = tenpval mn;
end
if (tenmpvalmn > val (NP+i,kk)) %if conpetitor is better
pop(NP+i , kk, :) t npxm n; % replace old vector (for new iteration)

val (NP+i , kk) t enpval mn;
end
end
if (feasmax == 1)
if (bmaxval (kk) < tenpval max)
if (tempval max - gTol > bmaxval (kk))
inmproved = 1;
end
bmaxval (kk) = tenpval max;
maxnmen(kk, :) = tnpxmax;
nvcross = nvcross + 1;
end

if (bmnval (kk) > tenpval max)
if (tempval max + gTol < bm nval (kk))
inmproved = 1;
end

end

bm nval (kk) = tenpval max;

m nnmen(kk, :) = tnpxmax;

nvcross = nvcross + 1;
end

if (tempval max > val (NP+i, kk)) % if conpetitor is better

pop(NP+i , kk, :) = tnpxmax;
val (NP+i , kk) = tenpval max;

end

if (tempval max < val (i, kk))

% replace old vector (for new iteration)

% if conpetitor is better

pop(i, kk, :) t npxmax; % replace old vector (for new iteration)
val (i, kk) t enpval max;
end
end
end
end % end for menber i=1:NP

mnmemt(k,:) = mnmemk,:); %freeze the best nenber of this iteration for the com ng
%iteration. This is needed for sone of the strategies.

maxnmem t (k,:) = maxmem(k,:); % freeze the best nenber of this iteration for the com ng
%iteration. This is needed for sone of the strategies.

end % next | evel

% I nt ernedi ate Qut put section
if (reiter > 0)
if (rem(iter,reiter) == 0)

fprintf(1,'\nGeneration: %, Function Evaluations: %l\n',iter, nfe);

for k=1:N+1

fprintf(1,'Level: %, BestMn: %, BestMax: %\n', k-1, bm nval (k), bmaxval (k));

end
end
end

novValid = novalid + 1;
if (inmproved == 1)
noValid = O;
end
iter = iter + 1;
% next generation

nGen = iter - 1;

nvc

= NVCross;

% Construct result fuzzy nunber fU

ite
whi

end

Tol
for

r =1,
le (iter > 0)
iter = 0;
for k = 1: N
if (bmnval (k+1) < bmnval (k))
iter = 1;
bm nval (k) = bm nval (k+1);
m nmen(k, :) = mnmenm(k+1,:);
end
if (bmaxval (k+1) > bnaxval (k))
iter = 1;
bmaxval (k) = bmaxval (k+1);
maxnmen(k, :) = maxnmen(k+1,:);
end
end
Bound = 0. 0001;

k=1: N+1
dlval = 0.0;
Ival = bm nval (k);
tnpx = mnmem(k, :);
for j=1:D
go=0;
if (tmpx(j) < Umk,j) + Tol Bound)
go = go+l;
end
if (tmpx(j) > Up(k,j) - Tol Bound)
go = go+2;
end
if (go>0)

dval = feval (fnane,tnpx, D, Extra,j);

if (go == 1)

dival = dlval + dval * dumk,j);

elseif (go == 2)

dival = dival + dval * dUp(k,j):

elseif (go == 3)

if (dval > 0.0)
dlval = dlval + dval *dum(k,j);
el se
dival = dlval + dval *dUp(k,j);
end
end
end
if dival <0
dlval = 0;
end
end
duval = 0.0;
uval = bmaxval (k);
tmpx = maxmen(k, :);
for j=1:D
go=0;
if (trpx(j) > Unm(k,j) - Tol Bound)
go = go+2;
end
if (tmpx(j) < Up(k,j) + Tol Bound)
go = go+l,;
end
if (go>0)
dval = feval (fnane,tnpx, D, Extra,j);
if (go == 1)
duval = duval + dval * dum(k,j);
elseif (go == 2)
duval = duval + dval * dUp(k,j);
elseif (go == 3)
if (dval > 0.0)
duval = duval + dval *dUp(k,j);
el se
duval = duval + dval *dUn(k,j);
end
end
end
if duval > 0
duval = 0;
end
end
fUk,1) = lval;
fUk,2) = dlval;
fUk,3) = wuval;
fuk,4) = duval;
end
for k=1: N
if fu(k,1) == fU(k+1,1)
fUk,2) = 0;
fU(k+1,2) = 0;
end
if fUu(k,3) == fUk+1, 3)
fU(k,4) = 0;
fU(k+1,4) = 0;
end

end

