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Abstract. The paper illustrates a di¤erential evolution (DE) algorithm
to calculate the level-cuts of the fuzzy extension of a multidimensional
real valued function to fuzzy numbers. The method decomposes the fuzzy
extension engine into a set of "nested" min and max box-constrained op-
timization problems and uses a form of the DE algorithm, based on multi
populations which cooperate during the search phase and specialize, a
part of the populations to �nd the the global min (corresponding to lower
branch of the fuzzy extension) and a part of the populations to �nd the
global max (corresponding to the upper branch), both gaining e¢ cienty
from the work done for a level-cut to the subsequent ones. A special ver-
sion of the algorithm is designed to the case of di¤erentiable functions,
for which a representation of the fuzzy numbers is used to improve ef-
�ciency and quality of calculations. The included computational results
indicate that the DE method is a promising tool as its computational
complexity grows on average superlinearly (of degree less than 1.5) in
the number of variables of the function to be extended.

1 Introduction

Appropriate use of fuzzy numbers in applications requires at least two features
to be satis�ed: (1) an easy way to represent and model fuzzy information with
a high �exibility of shapes, e.g. allowing asymmetries or nonlinearities; (2) a
relative simplicity and computational e¢ ciency to perform exact fuzzy calcula-
tions or to obtain good approximations of the results. In general, the arithmetic
operations on fuzzy numbers can be approached either by the direct use of the
membership function (by the Zadeh extension principle) or by the equivalent use
of the �� cuts representation. By the �� cuts approach, it is possible to de�ne
a parametric representation of fuzzy numbers with the advantage of obtaining a
wide family of fuzzy numbers (see [12]). It is well known that the fuzzy extension
principle requires to solve a set of optimization problems and di¤erent heuristic
methods have been proposed to obtain good solutions with a small number of
function evaluations. Well known fundamental algorithms are the vertex method
and its modi�cations (see [15] and [10]); the transformation method (see [6]) in
its general or reduced versions (see [8] for an e¢ cient implementation); a sparse
grids method (see [9]). We suggest here two procedures based on the di¤erential
evolution (DE) method of Storn and Price (see [13], [14], [11]) and adapted to
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take into account both the nested property of � � cuts and the min and max
problems over the same domains. In particular, we use simultaneous multiple
populations that collaborate each other and specialize during the process to �nd
all the required solutions. Computational results are reported that indicate the
DE method as a promising tool, as it exhibits, on average, superlinear compu-
tational complexity (of degree less than 1.5) in the number of variables.

2 Fuzzy numbers and fuzzy extension principle

We will consider fuzzy numbers and intervals, i.e. fuzzy sets de�ned over the �eld
R of real numbers having a particular form. A general fuzzy set over R is usually
de�ned by its membership function � : R �! T � [0; 1] and a fuzzy (sub)set u
of R is uniquely characterized by the pairs (x; �u(x)) for each x 2 R; the value
�u(x) 2 [0; 1] is the membership grade of x to the fuzzy set u. Denote by F(R)
the collection of the fuzzy sets over R. Elements of F(R) will be denoted by
letters u; v; w and the corresponding membership functions by �u; �v; �w:
Fundamental concepts in fuzzy theory are the support, the level-sets (or level-

cuts) and the core of a fuzzy set:

De�nition 1. Let �u be the membership function of a fuzzy set u over R. The
support of u is the (crisp) subset of points of R at which the membership grade
�u(x) is positive: supp(u) = fxjx 2 R, �u(x) > 0g. For � 2]0; 1]; the ��level cut
of u (or simply the � � cut) is de�ned by [u]� = fxjx 2 R; �u(x) � �g and for
� = 0 by the closure of the support [u]0 = clfxjx 2 R; �u(x) > 0g. The core of u
is the set of elements of R having membership grade 1; i.e. core(u) = fxjx 2 R,
�u(x) = 1g and we say that u is normal if core(u) 6= ;.

It is well-known that the level� cuts are "nested", i.e. [u]� � [u]� for � > �:
A particular class of fuzzy sets u 2 F(R) is when the support is a convex

set (A is said convex if (1 � t)x0 + tx00 2 A for every x0; x00 2 A and all t 2
[0; 1]) and the membership function is quasi-concave, i.e. supp(u) is convex and
�u((1�t)x0+tx00) � minf�u(x0); �u(x00)g for every x0; x00 2 supp(u) and t 2 [0; 1].
Equivalently, �u is quasi-concave if the level sets [u]� are convex for all � 2 [0; 1]:
Finally, if the membership function is upper semi-continuous, then the level-

cuts are closed.

De�nition 2. A fuzzy set u is a fuzzy quantity if the � � cuts are nonempty,
compact intervals of the form [u]� = [u�� ; u

+
� ] � R. If 9bu 2 R such that core(u) =

fbug; u is a fuzzy number and u is called a fuzzy interval if 9bu�; bu+ 2 R, bu� < bu+
such that core(u) = [bu�; bu+]:
The "nested" property is the basis for the LU representation (L for lower, U

for upper). We denote by F the set of fuzzy quantities.
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De�nition 3. An LU-fuzzy quantity (number or interval) u is completely deter-
mined by any pair u = (u�; u+) of functions u�; u+ : [0; 1] �! R, de�ning the
end-points of the �� cuts, satisfying the three conditions:(i) u� : � �! u�� 2 R
is a bounded monotonic nondecreasing left-continuous function 8� 2]0; 1] and
right-continuous for � = 0;(ii) u+ : � �! u+� 2 R is a bounded monotonic non-
increasing left-continuous function 8� 2]0; 1] and right-continuous for � = 0;(iii)
u�� � u+� 8� 2 [0; 1] :

The support of u is the interval [u�0 ; u
+
0 ] and the core is [u

�
1 ; u

+
1 ]. We refer to

the functions u�(:) and u
+
(:) as the lower and upper branches on u, respectively. If

the two branches u�(:) and u
+
(:) are continuous invertible functions then �u(:) is

formed by two continuous branches, the left being the increasing inverse of u�(:)
on [u�0 ; u

�
1 ] and, the right, the decreasing inverse of u

+
(:) on [u

+
1 ; u

+
0 ].

There are many choices for u�(:) and u
+
(:). If we start with two decreasing shape

functions p(:) and q(:) and with four numbers u�0 � u�1 � u+1 � u+0 de�ning the
support and the core of u then we can model u�(:) and u

+
(:) by u

�
� = u

�
1 � (u�1 �

u�0 )p(�) and u
+
� = u+1 � (u+1 � u+0 )q(�) for all � 2 [0; 1]. The simplest fuzzy

quantities have linear branches: a trapezoidal fuzzy interval, denoted by u =
ha; b; c; di ; where a � b � c � d; has ��cuts [u]� = [a+ �(b� a); d� �(d� c)] ;
� 2 [0; 1], obtaining a triangular fuzzy number if b = c:
Consider now the extension of function f : Rn ! R to a vector of n fuzzy

numbers u = (u1; u2; :::; un) 2 (F)n, with k � th component uk 2 F given by
[uk]� = [u

�
k;�; u

+
k;�] for k = 1; 2; :::; n or �uk :supp(uk)�! [0; 1] for k = 1; 2; :::; n

and denote v = f(u1; u2; :::; un).
The extension principle introduced by Zadeh in [16] is the basic tool for fuzzy

calculus; it states that �v is given by

�v(y) =

�
supfminf�u1(x1); :::; �un(xx)gjy = f(x1; :::; xn)g if y 2 Range(f)
0 otherwise

(1)
where Range(f) = fy 2 Rj9(x1; :::; xn) 2 Rn s.t. y = f(x1; :::; xn)g.
For a continuous function f : Rn ! R, the ��cuts of the fuzzy extension v are

obtained by solving the following box-constrained global optimization problems
(� 2 [0; 1])

v�� = min ff(x1; x2; :::; xn)jxk 2 [uk]�; k = 1; 2; :::; ng (2)

v+� = max ff(x1; x2; :::; xn)jxk 2 [uk]�; k = 1; 2; :::; ng : (3)

If the function f(x1; x2; :::; xn) is su¢ ciently simple, the analytical expressions for
v�� and v

+
� can be obtained, as it is the case for many unidimensional elementary

functions.
For general functions, we need to solve numerically the global optimization

problems (2) and (3) above; general methods have been proposed and a very
extended scienti�c literature is available. It is clear that in these cases we have
only the possibility of �xing a �nite set of values � 2 f�0; :::; �Mg and obtain
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the corresponding v�� and v
+
� pointwise; a su¢ ciently precise calculation requires

M in the range from 10 to 100 or more (depending on the application and
the required precision) and the computational time may become very high. To
reduce these di¢ culties, various speci�c heuristic methods have been proposed;
among others, the vertex method and its variants (see [3], [1] and [10]), the
transformation method (see [6], [7], [8]), the interval arithmetic optimization
with sparse grids (see [9]).
All the speci�c methods try to take computational advantage from the spe-

ci�c structure of "nested" optimizations (2)-(3) intrinsic in the properties of the
��cuts. We will see that, at least in the di¤erentiable case, the advantages of the
LU representation appear to be quite interesting, based on the fact that a small
number of � points is in general su¢ cient to obtain good approximations (this
is the essential gain in using the slopes to model fuzzy numbers), so reducing
the number of constrained min (2) and max (3) problems to be solved directly.
On the other hand, �nding computationally e¢ cient extension solvers is still an
open research �eld in fuzzy calculations.

3 Representation of LU-fuzzy numbers

As we have seen in the previous section, the LU representations of fuzzy numbers
require to use appropriate (monotonic) shape functions to model the lower and
upper branches of the � � cuts. In this section we present the basic elements
of a parametric representation of the shape functions proposed in [5] and [12]
based on monotonic Hermite-type interpolation. The parametric representations
can be used both to de�ne the shape functions and to calculate the arithmetic
operations by error controlled approximations.
We �rst introduce some models for "standardized" di¤erentiable monotonic

shape functions p : [0; 1] �! [0; 1] such that p(0) = 0 and p(1) = 1 with p(t)
increasing on [0; 1]; if interested to decreasing functions, we can start with an
increasing function p(:) and simply de�ne corresponding decreasing functions
q : [0; 1] �! [0; 1] by q(t) = 1� p(t) or q(t) = p('(t)) where ' : [0; 1] �! [0; 1]
is any decreasing bijection (e.g. '(t) = 1� t).
Valid shape functions can be obtained by p : [0; 1] �! [0; 1]; satisfying the

four Hermite interpolation conditions p(0) = 0, p(1) = 1 and p0(0) = �0,
p0(1) = �1 for any value of the two nonnegative parameters �i � 0; i = 0; 1:
To explicit the parameters, we denote the interpolating function by t �!

p(t;�0; �1) for t 2 [0; 1]:
We recall here two of the basic forms illustrated in [12]:

� (2,2)-rational spline: p(t;�0; �1) =
t2+�0t(1�t)

1+(�0+�1�2)t(1�t)
;

� mixed exponential spline: p(t;�0; �1) = 1
a [t

2(3�2t)+�0��0(1�t)a+�1ta]
where a = 1 + �0 + �1:
Note that in both forms we obtain a linear p(t) = t; 8t 2 [0; 1] if �0 = �1 = 1

and a quadratic p(t) = t2 + �0t(1� t) if �0 + �1 = 2:
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In order to produce di¤erent shapes we can either �x the slopes �0 and �1 (if
we have information on the �rst derivatives at t = 0; t = 1) or we can estimate
them by knowing values of p(t) in additional points.
The model functions above can be adopted to represent the functions "piece-

wise", on a decomposition of the interval [0; 1] into N subintervals 0 = �0 <
�1 < ::::: < �i�1 < �i < :::: < �N = 1: It is convenient to use the same sub-
division for both the lower u�� and upper u+� branches (we can always reduce
to this situation by the union of two di¤erent subdivisions). In each subinterval
Ii = [�i�1; �i], the values and the slopes of the two functions are

u�(�i�1) = u
�
0;i , u

+
(�i�1)

= u+0;i , u
�
(�i)

= u�1;i , u
+
(�i)

= u+1;i (4)

u0�(�i�1) = d
�
0;i , u

0+
(�i�1)

= d+0;i , u
0�
(�i)

= d�1;i , u
0+
(�i)

= d+1;i

and by the transformation t� =
���i�1
�i��i�1 ; � 2 Ii; each subinterval Ii is mapped

into the standard [0; 1] interval to determine each piece independently. Globally
continuous or more regular C(1) fuzzy numbers can be obtained directly from the
data (for example, u�1;i = u

�
0;i+1; u

+
1;i = u

+
0;i+1 for continuity and d

�
1;i = d

�
0;i+1,

d+1;i = d
+
0;i+1 for di¤erentiability at � = �i).

Let p�i (t) denote the model function on Ii; we obtain p
�
i (t) = p(t;�

�
0;i; �

�
1;i),

p+i (t) = 1 � p(t;�
+
0;i; �

+
1;i) with �

�
j;i =

�i��i�1
u�1;i�u

�
0;i

d�j;i and �
+
j;i = �

�i��i�1
u+1;i�u

+
0;i

d+j;i for

j = 0; 1 so that, for � 2 [�i�1; �i] and i = 1; 2:; ; ; N :

u�� = u
�
0;i + (u

�
1;i � u

�
0;i)p

�
i (t�) , u

+
� = u

+
0;i + (u

+
1;i � u

+
0;i)p

+
i (t�) : (5)

The illustrated monotonic models suggest a �rst parametrization of fuzzy
numbers on the trivial decomposition of interval [0; 1], with N = 1 (without
internal points) and �0 = 0; �1 = 1: In this simple case, u can be represented by
a vector of 8 components (the slopes corresponding to u�i are denoted by �u

�
i ,

etc)

u = (u�0 ; �u
�
0 ; u

+
0 ; �u

+
0 ;u

�
1 ; �u

�
1 ; u

+
1 ; �u

+
1 ) (6)

with u�0 ; �u
�
0 ; u

�
1 ; �u

�
1 for the lower branch u�� and u+0 ; �u

+
0 ; u

+
1 ; �u

+
1 for the

upper branch u+� .
On a decomposition 0 = �0 < �1 < ::: < �N = 1 we can proceed piecewise.

For example, a di¤erentiable shape function requires 4(N + 1) parameters

u = (�i;u
�
i ; �u

�
i ; u

+
i ; �u

+
i )i=0;1;:::;N with (7)

u�0 � u�1 � ::: � u�N � u
+
N � u

+
N�1 � ::: � u

+
0 (data)

�u�i � 0; �u
+
i � 0 (slopes).

and the branches are computed according to (5). In [5] and [12] we have analyzed
the advantages of the LU representation in the computation of fuzzy expressions.
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4 Di¤erential Evolution algorithms for fuzzy arithmetic

In this section we adopt an algorithmic approach to describe the application of
di¤erential evolution methods to calculate the fuzzy extension of multivariable
function, associated to the LU representation of the fuzzy quantities involved.
Let v = f(u1; u2; :::; un) denote the fuzzy extension of a continuous function

f in n variables; it is well known that the fuzzy extension of f to normal up-
per semicontinuous fuzzy intervals (with compact support) has the level-cutting
commutative property (see [4]), i.e. the ��cuts v� = [v�� ; v+� ] of v are the images
of the ��cuts of (u1; u2; :::; un) and are obtained by solving the box-constrained
optimization problems

(EP)� :

8<:v
�
� = min

n
f(x1; x2; :::; xn)jxk 2 [u�k;�; u

+
k;�]; k = 1; 2; :::; n

o
v+� = max

n
f(x1; x2; :::; xn)jxk 2 [u�k;�; u

+
k;�]; k = 1; 2; :::; n

o
:
(8)

For simplicity, we will illustrate the case of di¤erentiable representations (7)
and di¤erentiable function f .
Let uk = (u

�
k;i; �u

�
k;i; u

+
k;i; �u

+
k;i)i=0;1;:::;N be the LU-fuzzy representations of

the input quantities for k = 1; 2; :::; n and v = (v�i ; �v
�
i ; v

+
i ; �v

+
i )i=0;1;:::;N ; the

�� cuts of v are obtained by solving the box-constrained optimization problems
(8).
For each � = �i, i = 0; 1; :::; N the min and the max (8) can occur either

at a point whose components xk;i are internal to the corresponding intervals
[u�k;i; u

+
k;i] or are coincident with one of the extremal values; denote by bx�i =

(bx�1;i; :::; bx�n;i) and bx+i = (bx+1;i; :::; bx+n;i) the points where the min and the max
take place; then v�i = f(bx�1;i; bx�2;i; :::; bx�n;i) and v+i = f(bx+1;i; bx+2;i; :::; bx+n;i) and the
slopes �v�i , �v

+
i are computed (as f is di¤erentiable) by

�v�i =
nX
k=1bx�k;i=u�k;i

@f(bx�1;i; :::; bx�n;i)
@xk

�u�k;i +
nX
k=1bx�k;i=u+k;i

@f(bx�1;i; :::; bx�n;i)
@xk

�u+k;i (9)

�v+i =

nX
k=1bx+k;i=u�k;i

@f(bx+1;i; :::; bx+n;i)
@xk

�u�k;i +

nX
k=1bx+k;i=u+k;i

@f(bx+1;i; :::; bx+n;i)
@xk

�u+k;i: (10)

If, for some reasons, the partial derivatives of f at the solution points are not
available we can produce an estimation of the shapes �v�i and �v

+
i .

The idea of DE to �nd min or max of ff(x1; :::; xn)j(x1; :::; xn)2A � Rng is
simple (see [13] and [14],[2] for constraints handling).
DE is a (parallel) direct search algorithm wich utilizes a "population" x(1) =

(x1; :::; xn)
(1); :::; x(NP ) = (x1; :::; xn)

(NP )2A of NP feasible points for each gen-
eration (i.e. for each iteration) to obtain a new set of points by recombining
randomly the individuals of the current population and by selecting the best
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generated elements to continue in the next generation. The initial population is
chosen randomly and should try to cover uniformly the entire parameter space.
Denote by x(p;g) the p�th vector if the population at iteration (generation)

g and by x(p;g)j its j�th component (j = 1; :::; n).
At each iteration, the method generates a set of candidate points y(p;g) to

substitute the elements x(p;g) of the current population, if y(p;g) is better.
To generate y(p;g) two operations are applied: recombination and crossover.
A typical recombination operates on a single component j 2 f1; :::; ng and

generates a new perturbed vector of the form v
(p;g)
j = x

(r;g)
j + 
[x

(s;g)
j � x(t;g)j ],

where r; s; t 2 f1; 2; :::; pg are chosen randomly and 
 2]0; 2] is a constant (even-
tually chosen randomly for the curent iteration) that controls the ampli�cation
of the variation.
The potential diversity of the population is controlled by a crossover operator,

that construct the candidate y(p;g) by crossing randomly the components of the
perturbed vector v(p;g)j and the old vector x(p;g)j :

y
(p;g)
j =

(
v
(p;g)
j if j 2 fj1; j2; :::; jkg
x
(p;g)
j if j =2 fj1; j2; :::; jkg

with k random between 1 and n and 0 with a crossover probability q

and j1; j2; :::; jk being random components if k is not 0:

So, the components of each individual of the current population are modi�ed
to y(p;g)j by a given probability q:
Typical values are 
 2 [0:2; 0:95], q 2 [0:7; 1:0] and NP � 5n (the higher

NP , the lower 
).
The candidate y(p;g) is then compared to the existing x(p;g) by evaluating

the objective function at y(p;g) : if f(y(p;g)) is better than f(x(p;g)) then y(p;g)

substitutes x(p;g) in the new generation g + 1, otherwise x(p;g) is retained.
Many variants of the recombination schemes have been proposed and some

seem to be more e¤ective than others. Examples are:
DE/rand/1: v(p;g)j = x

(r;g)
j + 
[x

(s;g)
j � x(t;g)j ];

DE/best/1: v(p;g)j = x
(best;g)
j + 
[x

(s;g)
j � x(t;g)j ] where x(best;g) is the current

best solution;
DE/rand-best/2: v(p;g)j = x

(p;g)
j + 
[x

(best;g)
j � x(p;g)j + x

(s;g)
j � x(t;g)j ];

DE/best/2: v(p;g)j = x
(best;g)
j +
[x

(s1;g)
j +x

(s2;g)
j �x(t1;g)j �x(t2;g)j ], s1; t1; s2; t2 2

f1; 2; :::; pg are random;
DE/rand/2: v(p;g)j = x

(r;g)
j + 
[x

(s1;g)
j + x

(s2;g)
j � x(t1;g)j � x(t2;g)j ],

To take into account the particular nature of our problem, we modify the
basic procedure and examine two di¤erent strategies:
1. SPDE (Single Population DE Procedure): start with the (� = 1)�cut back

to the (� = 0)�cut so that the optimal solutions at a given level can be inserted
into the "starting" populations of lower levels; use two distinct populations and
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perform the recombinations such that, during generations, one of the populations
specializes to �nd the minimum and the other to �nd the maximum.
2. MPDE (Multiple Populations DE Procedure): use 2(N + 1) populations

to solve simultaneously all the box-constrained problems (8); N +1 populations
specialize for the min and the others for the max and the current best solution
for level �i is valid also for levels �0; :::; �i�1:
Let [u�j;i; u

+
j;i]; j = 1; 2; :::; n and f : Rn ! R be given; we have to �nd v�i

and v+i according to (8) for i = 0; 1; :::; N . The slope parameters �v�i , �v
+
i are

computed by (9) and (10).
To handle the feasibility constraints we have to ensure either that at each

generation we have u�j;i � y
(p;g)
j � u+j;i or at least that the �nal solutions bx�i =

(bx�1;i; :::; bx�n;i) and bx+i = (bx+1;i; :::; bx+n;i) are feasible.
An e¢ cient constraint handling method has been examined in [2], where a

tournament selection is proposed, based on three criteria:
(1) any feasible solution is preferred to any infeasible solution;
(2) among two feasible solutions, the one with better objective value is pre-

ferred;
(3) among two infeasible solutions, the one having smaller constraints viola-

tion is preferred.
In our case, as we have simple box-constraints, it is easy to produce feasible

starting populations, as we have to generate random numbers x(p;0)j between the
lower u�j;i and the upper u

+
j;i values.

During the iterations, we use a variant of the method above, where the y(p;g)

are progressively forced to be feasible or with small infeasibilities and a penalty
is assigned to infeasible values:
(i) modify y(p;g)j to �t [u�j;i � "

g2 ; u
+
j;i +

"
g2 ]; j = 1; 2; :::; n with small " �

10�2(u+j;i � u
�
j;i); so that the eventual infeasibilities decrease rapidly during the

generation process;
(ii) if the candidate point y(p;g) is infeasible and has a value f(y(p;g)) better

than the current best feasible value f(x(best;g)) then a penalty is added and the
value of y(p;g) is elevated to f(x(best;g))+"0 (for the min problems) or reduced to
f(x(best;g))�"0 (for the max problem), being "0 � 10�3 a small positive number.
The �rst strategy SPDE is implemented in algorithm 1. Function ran(0; 1)

generates a random uniform number in [0,1].



9

Algorithm 1: (Single Population DE procedure: SPDE with DE/rand/1).
Choose p � 10n, gmax � 500, q and 
.
select (x

(l)
1 ; :::; x

(l)
n ); x

(l)
k 2 [u�k;N ; u

+
k;N ] 8k; l = 1; :::; 2p (initial population)

evaluate y(l) = f(x
(l)
1 ; :::; x

(l)
n )

for i = N;N � 1; :::; 0
for g = 1; 2; :::; gmax (up to gmax generations or other stopping rule)
for l = 1; 2; :::; 2p
select (randomly) r; s; t 2 f1; 2; :::; 2pg and j� 2 f1; 2; :::; ng
for j = 1; 2; :::; n

if (j = j� or ran(0; 1) < q) then x0j = x
(r)
j + 
[x

(s)
j � x(t)j ] else x0j = x

(l)
j

ensure that u�j;i � x0j � u
+
j;i (or other feasibility handling)

end
evaluate y = f(x01; :::; x

0
n)

if l � p and y < y(l) then substitute (x1; :::; xn)(l) with (x01; :::; x0n) (min)
if l > p and y > y(l) then substitute (x1; :::; xn)(l) with (x01; :::; x

0
n) (max)

end
end
v�i = y

(l�) = min
�
y(l)jl = 1; 2; :::; p

	
, (bx�1;i; :::; bx�n;i) = (x1; :::; xn)(l�)

v+i = y
(l��) = max

�
y(p+l)jl = 1; 2; :::; p

	
, (bx+1;i; :::; bx+n;i) = (x1; :::; xn)(l��)

if i < N

select (x
(l)
1 ; :::; x

(l)
n ); x

(l)
k 2 [u�k;i�1; u

+
k;i�1] 8k; l = 1; :::; 2p

including (bx�1;i; :::;bx�n;i) and (bx+1;i; :::;bx+n;i)
endif
end
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The second strategy MPDE is implemented in algorithm 2.

Algorithm 2: (Multi Populations DE procedure: MPDE with DE/rand/1).
Choose p � 10n, gmax � 500, q and 
.
select (x(l;i)1 ; :::; x

(l;i)
n ); x

(l;i)
k 2 [u�k;i; u

+
k;i] 8k; l = 1; :::; 2p; i = 0; 1; :::; N

let y(l;i)= f(x(l;i)1 ; :::; x
(l;i)
n )

let v�i =min
�
y(l;j)jj = 0; :::; i;8l

	
, v+i =max

�
y(l;j)jj = 0; :::; i;8l

	
denote by bx�i ;bx+i 2 Rn the points where v�i and v+i are taken
for g = 1; 2; :::; gmax (up to gmax generations or other stopping rule)
for i = N;N � 1; :::; 0
for l = 1; 2; :::; p
select (randomly) r; s; t 2 f1; 2; :::; pg and k�2 f1; 2; :::; ng
for k = 1; 2; :::; n
if (k = k� or ran(0; 1) < q) then

x0k= x
(r;i)
k +
[x

(s;i)
k �x(t;i)k ]

x00k= x
(p+r;i)
k +
[x

(p+s;i)
k �x(p+t;i)k ]

ensure u�k;i � x0k; x00k � u
+
k;i) (or other feasibility handling)

else

x0k= x
(l;i)
k , x00k= x

(p+l;i)
k

endif
end
let y0= f(x01; :::; x

0
n) and y00= f(x

00
1 ; :::; x

00
n)

if y0 < y(l;i) substitute (x1; :::; xn)(l;i) with (x01; :::; x
0
n) (min)

if y00 > y(p+l;i) substitute (x1; :::; xn)(p+l;i) with (x001 ; :::; x
00
n) (max)

update the values fv�j ; v
+
j ; bx�j ;bx+j jj = 0; :::; ig if y0 or y00 are better

end
end
end
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5 Computational results

The two algorithms SPDE and MPDE have been implemented using C++ and
Matlab and executed on a set of test functions with di¤erent dimension n =
2; 4; 8; 16; 32:

The problems are taken from the references [2], [5], [6], [7], [8], [9], [11], [12],
[14].

The �rst 20 problems are of dimension n = 2:

Problem 1: f(x1; x2) = x2 cos(�x1) over the support (x1; x2) 2 [0; 5] �
[1; 5]

Problem 2:f(x1; x2) = x31x2 over the support (x1; x2) 2 [0; 5]� [1; 5]

Function f(x1; x2) of Problem 1. Function f(x1; x2) of Problem 2.

Problem 3: f(x1; x2) = x2+x1=x2 over the support (x1; x2) 2 [0; 5]�[1; 5]

Problem 4: f(x1; x2) =
p
(x1 � 0:1)4 + (x2 � 0:1)4 over the support

(x1; x2) 2 [�2; 2]2
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Function f(x1; x2) of Problem 3. Function f(x1; x2) of Problem 4.

Problem 5: f(x1; x2) = 1
0:2+(x1�2)4+(x2�2)2 over the support (x1; x2) 2

[0; 5]� [1; 5]

Problem 6: f(x1; x2) = 1 + 1
2x1 + sin(2x1 � �=2) + 2 cos(x2) over the

support (x1; x2) 2 [�2; 2]2

Function f(x1; x2) of Problem 5. Function f(x1; x2) of Problem 6.

Problem 7: f(x1; x2) = (x21 � x2)
2 + 0:01(1 � x1)

2 over the support
(x1; x2) 2 [�2; 2]2

Problem 8: f(x1; x2) = (1 �
p
x21 + x

2
2) sin(�(x1 +

1
2 )) over the support

(x1; x2) 2 [�1; 1]� [�2; 2]
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Function f(x1; x2) of Problem 7. Function f(x1; x2) of Problem 8.

Problem 9: f(x1; x2) = 20 cos(x1+x2)�x21�x22 over the support (x1; x2) 2
[�4; 4]2

Problem 10: f(x1; x2) = 3(1 � x1)2exp(�x21 � (x2 + 1)2) �10( 15x1 � x
3
1 �

x52)exp(�x21 � x22) �exp(�x22 � (1 + x1)2)=3 over the support (x1; x2) 2
[�3; 3]� [�2; 2]

Function f(x1; x2) of Problem 9. Function f(x1; x2) of Problem 10.

Problem 11: f(x1; x2) = exp(�2:1x1 � 0:3)exp(�2:2x2 � 0:7) over the
support (x1; x2) 2 [0; 2]� [�1; 0]

Problem 12: f(x1; x2) = cos(2x1 + sin(x2)) + cos(x2)� 0:1(x21 + x22) over
the support (x1; x2) 2 [�4; 4]2
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Function f(x1; x2) of Problem 11. Function f(x1; x2) of Problem 12.

Problem 13: f(x1; x2) = exp(�x21 � 0:1x22) over the support (x1; x2) 2
[�1; 1]2

Problem 14: f(x1; x2) = 20+ e�20exp(�0:2(x21+x22)=4) �exp((cos(2�x1)+
cos(2�x2))=4) over the support (x1; x2) 2 [�1; 3]2

Function f(x1; x2) of Problem 13. Function f(x1; x2) of Problem 14.

Problem 15: f(x1; x2) = (5x1=� � 5:1x21
4�2 + x2 � 6)2 + 10(1 � 1

8� )cos(x1) +
10 over the support (x1; x2) 2 [0; 10]2

Problem 16: f(x1; x2) = x21 � 10cos(2�x1) + 10 + x22 � 10cos(2�x2) + 10
over the support (x1; x2) 2 [0; 3]2
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Function f(x1; x2) of Problem 15. Function f(x1; x2) of Problem 16.

Problem 17: f(x1; x2) = 1
1=0:72+(x1�0:7)2

1
1=1:32(x2�0:3)2 over the support

(x1; x2) 2 [�1; 1]2

Problem 18: f(x1; x2) = 1
(1+0:7x2+1:3x2)3

over the support (x1; x2) 2
[0; 1]2

Function f(x1; x2) of Problem 17. Function f(x1; x2) of Problem 18.

Problem 19: f(x1; x2) = exp[�(0:7(x1�0:7))2�(1:3(x2�0:3))2] over the
support (x1; x2) 2 [�1; 1]2

Problem 20: f(x1; x2) = 100(x2 � x21)2 + (x1 � 1)2 over the support
(x1; x2) 2 [�0:1; 0:1]� [�0:2; 0:2]
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Function f(x1; x2) of Problem 19. Function f(x1; x2) of Problem 20.

The six problems of the second group have dimension n = 4.

Problem 21: f(x1; :::; x4) =
4P
i=1

�
x2i � 10 cos(2�xi) + 10

�
over the support

xi 2 [0; 3]

Problem 22: f(x1; :::; x4) =
4Q
i=1

(c�2i +(xi�wi)2)�1 with c = (0:8; 1:5; 2:3; 2:43)

and w = (0:2; 0:4; 0:3; 0:1) over the support xi 2 [�1; 1]4

Problem 23: f(x1; :::; x4) = (1+
4P
i=1

cixi)
�(1+n) with c = (0:8; 1:5; 2:3; 2:43)

over the support xi 2 [0; 1]4

Problem 24: f(x1; :::; x4) = exp(�
4P
i=1

c2i (xi�wi)2) with c = (0:8; 1:5; 2:3; 2:43)

over the support xi 2 [�1; 1]4

Problem 25: f(x1; :::; x4) = 20 + e� 20 exp
"
�0:2

s
1
4

4P
i=1

x2i

#
�exp

�
1
4

4P
i=1

cos(2�xi)

�
over the support (x1; x2) 2 [�1; 3]4

Problem 26: f(x1; :::; x4) =
3P
i=1

�
10(xi+1 � x2i )2 + (xi � 1)2

�
over the

support xi 2 [�0:2; 0:2]4:
The last three groups contain problems of dimension n = 8, n = 16 and

n = 32 respectively.
They are constructed by the Rastrigin function, the Ackley function and a

modi�ed Rosenbrock function:

1. Rastrigin: f(x1; :::; xn) =
nP
i=1

�
x2i � 10 cos(2�xi) + 10

�
, xi 2 [0; 3];

2. Ackley: f = 20 + e� 20 exp
"
�0:2

s
1
n

nP
i=1

x2i

#
�exp

�
1
n

nP
i=1

cos(2�xi)

�
; xi 2

[�1; 3];
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3. Modi�ed Rosenbrock: f(x1; :::; xn) =
n�1P
i=1

�
10(xi+1 � x2i )2 + (xi � 1)2

�
; xi 2

[�0:2; 0:2]:

Problem 27: Rastrigin function with n = 8.

Problem 28: Ackley function with n = 8:

Problem 29: Modo�ed Rosenbrock function with n = 8:

Problem 30: Rastrigin function with n = 16:

Problem 31: Ackley function with n = 16:

Problem 32: Modo�ed Rosenbrock function with n = 16:

Problem 33: Rastrigin function with n = 32:

Problem 34: Ackley function with n = 32:

Problem 35: Modo�ed Rosenbrock function with n = 32:

In the computations, the input fuzzy numbers are triangular and symmetric
of the form ui =



ai;

ai+bi
2 ; bi

�
with support given by the interval [ai; bi]; the

applied supports are illustrated in the table.

The extension algorithm is used in combinations with the LU-fuzzy repre-
sentation for di¤erentiable membership functions (and di¤erentiable extended
functions) and the number N + 1 of �� cuts (and correspondingly of min/max
optimizations) can be su¢ ciently small. Experiments in [5] and [12] motivated
that N = 5 is in general quite su¢ cient to obtain very good approximations.

In the present tests, N = 10 is used.

The �gures here illustrate the LU-fuzzy extensions obtained by the two al-
gorithms.
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:

The table below reports the number of function evaluations FESPDE and
FEMPDE needed to the two algorithms SPDE andMPDE to reach the solution
of the nested min/max optimization problems corresponding to the 11 �� cuts
of the uniform ��decomposition �i = i

10 ; i = 0; 1; :::; 10 (N = 10 subintervals).

To decide that a solution is found, we use the following simple rule: choose
a �xed tolerance tol � 10�3; 10�4 and a number bg � 20; 30 of generations; if
for bg subsequent iterations all the values v�i and v+i are changed less than tol;
then the procedure stops and the found solution is assumed to be optimal. In
any case, no more than 500 iterations are performed (but this limit was never
reached during the computations).
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Problem n FESPDE FEMPDE Problem n FESPDE FEMPDE

1 2 15400 8800 19 2 11880 6820
2 2 12760 7260 20 2 11440 6600
3 2 11880 6820 21 4 40040 32560
4 2 12760 6380 22 4 31240 22000
5 2 16280 6600 23 4 15840 15840
6 2 12760 6380 24 4 19360 14520
7 2 12320 5720 25 4 27720 16280
8 2 11000 5500 26 4 19360 18920
9 2 16720 7040 27 8 72160 47520
10 2 18920 10560 28 8 51392 25344
11 2 13640 7700 29 8 20416 19712
12 2 13200 8140 30 16 292160 186560
13 2 10120 5280 31 16 255552 98560
14 2 16280 6380 32 16 59136 63360
15 2 16280 7920 33 32 1122176 560384
16 2 23760 9020 34 32 283008 252032
17 2 11880 6600 35 32 250624 243584
18 2 11880 6600

The �gure below represents the logarithm of the number of function eval-
uations vs the logarithm of the number n of arguments. It appears an almost
linear relationship ln(FESPDE) = a + b ln(n) and ln(FEMPDE) = c + d ln(n) :
the estimated coe¢ cients are a = 8:615; b = 1:20 and c = 7:869; d = 1:34: The
computational complexity of the proposed algorithms ( on average for the 22
test problems) grows less then quadratically with the dimension n (SPDE is less
e¢ cient but grows slowly than MPDE). This is an interesting result, as all the
existing methods for the fuzzy extension of functions are essentially exponential
in n.
The C++ source codes are available on request to the author; also a MatLab

implementation is available.
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APPENDIX 1 
Matlab Implementation of the Single Population DE Algorithm: SPDE 
 
 
 
 
 
function [fU, nGen, nfe] = ... 
    FuzzySPDE(fname,D,Extra,N,U,Pfact,strategy,reiter,replot,maxGen,gTol,noGen) 
% Fuzzy Extension of a D-dimensional function defined by  
%      f(x) = fname(x,D,Extra,k), 
% using the Single Population differential evolution (SPDE) algorithm. 
% The D-dimensional fuzzy argument U and result fU are in LU-fuzzy format: 
%        U = (Um,dUm,Up,dUp;i=1:N+1) over N uniform alpha's subintervals 
%            in 3-dimensional matrix form 
%            U(i=1:N+1;j=1:D;k=1:4) 
%            where    i  is the index of alpha-cut corresponding to 
%                        alpha(i) = (i-1)/N. (i starts from 1 to N+1) 
%                     j  is the index of a component of U 
%                     k  is 1 for Um, 2 for dUm, 3 for Up, 4 for dUp 
%                        so that  U(i,j,:) are the four LU-fuzzy parameters 
%                        defining U(j) at i-th alpha-cut   
%       fU = (fUm,dfUm,fUp,dfUp;i=1:N+1) over N uniform alpha's subintervals 
%            so that  fU(i,:) are the four LU-fuzzy parameters defining 
%            f(U) at i-th alpha-cut  
%           
% Output: 
%    fU        Fuzzy Extended value f(U) in LU-fuzzy form 
%    nf        number of function evaluations needed 
% 
% Inputs:   
%    fname     string naming a function f(x,y) to minimize 
%    D         number of parameters of the function  
%    Extra     vector of extra values eventually needed to calculate f(x) 
%    Pfact     factor for the number NP = Pfact*D of population members 
%    maxGen    maximum number of generations (>= 200) 
% 
% Value function f(x) has to be defined by the user 
% define fname.m as 
%                function fv = fname(x,D,Extra,k) 
%                   fv = function value f at x if k=0 
%                   fv = partial first derivative of f at x wrt x(k) if k=1:D  
%                end 
% 
% Internal Important Parameters: 
%    F         DE-stepsize (in [0, 2]) 
%    CR        crossover probability (in [0, 1]) 
%    strategy    1 --> DE/best/1/exp           6 --> DE/best/1/bin 
%                2 --> DE/rand/1/exp           7 --> DE/rand/1/bin 
%                3 --> DE/rand-to-best/1/exp   8 --> DE/rand-to-best/1/bin 
%                4 --> DE/best/2/exp           9 --> DE/best/2/bin 
%                5 --> DE/rand/2/exp           else  DE/rand/2/bin 
%    reiter      intermediate output will be produced after "reiter" 
%                iterations. No intermediate output will be produced 
%                if reiter is < 1 
%    replot      same as for reiter, to plot the populations of level k=1 
% 
% Notes: 
%       The code is adapted from   
%             function devec3, (1997), by R. Storn (ICSI, Berkeley) 
%       author: Luciano Stefanini, University of Urbino, Italy, 2006. 
%               lucste@uniurb.it  
%       A good initial guess is to choose F from interval [0.5, 1], 
%       the crossover probability CR from interval [0, 1] helps to maintain 
%       the diversity of the population and is rather uncritical. The 
%       number of population members NP is also not very critical. A 
%       good initial guess is 10*D. Depending on the difficulty of the 
%       problem NP can be lower than 10*D or must be higher than 10*D 
%       to achieve convergence. 
%       If the parameters are correlated, high values of CR work better. 
%       The reverse is true for no correlation. 
% 
% This program is free software; you can redistribute and/or modify it. 
% It is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. 
 



% default values: 
NP = Pfact*D;   
F = 0.8;  
CR = 0.5;  
 
if (NP < 5) 
   NP=5; 
end 
if (maxGen <= 0) 
   maxGen = 200; 
end 
reiter = floor(reiter); 
replot = floor(replot); 
if ( D < 2  ||  D > 2 )  
    replot = 0; 
end 
 
% Initialize arrays 
Um  = zeros(N+1,D); 
Up  = zeros(N+1,D); 
dUm = zeros(N+1,D); 
dUp = zeros(N+1,D); 
for k=1:N+1 
    for j=1:D 
        Um(k,j)  = U(k,j,1); 
        Up(k,j)  = U(k,j,3); 
        dUm(k,j) = U(k,j,2); 
        dUp(k,j) = U(k,j,4); 
    end 
end 
fU  = zeros(N+1,4); 
 
pop     = zeros(2*NP,D); 
bminval = zeros(1,N+1); 
bmaxval = zeros(1,N+1); 
minmemit = zeros(1,D); 
minmem   = zeros(N+1,D); 
maxmemit = zeros(1,D); 
maxmem   = zeros(N+1,D); 
val      = zeros(1,2*NP); 
lx      = zeros(1,D); 
ux      = zeros(1,D); 
tmpx    = zeros(1,D); 
% populations 1 to NP for lower branch and NP+1 to 2NP for upper branch 
 
nfe       = 0;            % number of function evaluations 
nGen      = 0; 
 
for k = (N+1):-1:1 
     
    lx  = reshape(Um(k,:),1,D); 
    ux  = reshape(Up(k,:),1,D); 
    for i=1:2*NP 
        pop(i,:) = lx + rand(1,D).*(ux - lx);  
    end 
    if k < N+1 
       pop(1,:)    = minmem(k+1,:); 
       pop(NP+1,:) = maxmem(k+1,:); 
   end 
    % Evaluate initial populations 
    for i=1:2*NP  
        tmpx = pop(i,:); 
        val(i) = feval(fname,tmpx,D,Extra,0); 
        nfe  = nfe + 1; 
    end 
    % identify best initial values for each cut 
    imin    = 1; 
    imax    = 1; 
    minval = val(1); 
    maxval = val(1); 
    for i=2:2*NP 
        if (val(i) < minval) 
            imin   = i; 
            minval = val(i); 
        end 
        if (val(i) > maxval) 
            imax   = i; 
            maxval = val(i); 



        end 
    end 
    bminval(k)    = minval;           % best min value ever 
    bmaxval(k)    = maxval;           % best max value ever 
    minmemit      = pop(imin,:);      % best min member of current iteration 
    minvalit      = minval;           % best min value of current iteration 
    minmem(k,:)   = minmemit;         % best min member ever 
    maxmemit      = pop(imax,:);      % best max member of current iteration 
    maxvalit      = maxval;           % best max value of current iteration 
    maxmem(k,:)   = maxmemit;         % best max member ever 
     
 
    %------popold is the population which has to compete. It is-------- 
    %------static through one iteration. pop is the newly-------------- 
    %------emerging population.---------------------------------------- 
 
    popold = zeros(NP,D);        % toggle populations 
 
    pm1 = zeros(NP,D);              % initialize population matrix 1 
    pm2 = zeros(NP,D);              % initialize population matrix 2 
    pm3 = zeros(NP,D);              % initialize population matrix 3 
    pm4 = zeros(NP,D);              % initialize population matrix 4 
    pm5 = zeros(NP,D);              % initialize population matrix 5 
    bm  = zeros(NP,D);              % initialize bestmember  matrix 
    ui  = zeros(NP,D);              % intermediate population of perturbed vectors 
    mui = zeros(NP,D);              % mask for intermediate population 
    mpo = zeros(NP,D);              % mask for old population 
    rot = (0:1:NP-1);               % rotating index array (size NP) 
    rotd= (0:1:D-1);                % rotating index array (size D) 
    rt  = zeros(NP);                % another rotating index array 
    rtd = zeros(D);                 % rotating index array for exponential crossover 
    a1  = zeros(NP);                % index array 
    a2  = zeros(NP);                % index array 
    a3  = zeros(NP);                % index array 
    a4  = zeros(NP);                % index array 
    a5  = zeros(NP);                % index array 
    ind = zeros(4); 
 
    iter = 1; 
    noValid = 0; 
    while ((iter <= maxGen) & (noValid < noGen)) 
        improved = 0; 
        ind = randperm(4);                 % index pointer array 
        a1  = randperm(NP);                % shuffle locations of vectors 
        rt = rem(rot+ind(1),NP);           % rotate indices by ind(1) positions 
        a2  = a1(rt+1);                    % rotate vector locations 
        rt = rem(rot+ind(2),NP); 
        a3  = a2(rt+1);                 
        rt = rem(rot+ind(3),NP); 
        a4  = a3(rt+1);                
        rt = rem(rot+ind(4),NP); 
        a5  = a4(rt+1);                 
 
       % process lower branches, nested Min problems 
       for i=1:NP 
          popold(i,:) = pop(i,:);  % save the old population 
       end 
       pm1 = popold(a1,:);       % shuffled population 1 
       pm2 = popold(a2,:);       % shuffled population 2 
       pm3 = popold(a3,:);       % shuffled population 3 
       pm4 = popold(a4,:);       % shuffled population 4 
       pm5 = popold(a5,:);       % shuffled population 5 
       for i=1:NP    % population filled with best member of last iteration 
           for j=1:D 
               bm(i,j) = minmemit(j); 
           end 
       end 
       mui = rand(NP,D) < CR;  % all random numbers < CR are 1, 0 otherwise 
       if (strategy > 5) 
          st = strategy-5;  % binomial crossover 
       else 
          st = strategy;      % exponential crossover  
          mui=sort(mui');     % transpose, collect 1's  in each column 
          for i=1:NP 
             n=floor(rand*D); 
             if n > 0 
                rtd = rem(rotd+n,D); 
                mui(:,i) = mui(rtd+1,i); %rotate column i by n 



            end 
          end 
          mui = mui';         % transpose back 
       end 
       mpo = mui < 0.5;                % inverse mask to mui 
       if (st == 1)                      % DE/best/1 
          ui = bm + F*(pm1 - pm2);         
          ui = popold.*mpo + ui.*mui;      
       elseif (st == 2)                  % DE/rand/1 
          ui = pm3 + F*(pm1 - pm2);        
          ui = popold.*mpo + ui.*mui;      
       elseif (st == 3)                  % DE/rand-to-best/1 
          ui = popold + F*(bm-popold) + F*(pm1 - pm2);         
          ui = popold.*mpo + ui.*mui;      
       elseif (st == 4)                  % DE/best/2 
          ui = bm + F*(pm1 - pm2 + pm3 - pm4);   
          ui = popold.*mpo + ui.*mui;            
       elseif (st == 5)                  % DE/rand/2 
          ui = pm5 + F*(pm1 - pm2 + pm3 - pm4);  
          ui = popold.*mpo + ui.*mui;            
       end 
       % force feasibility of current population for level k 
       for i=1:NP 
           for j=1:D 
               if ( ui(i,j) < lx(j) ) 
                   ui(i,j) = lx(j); 
               end 
               if ( ui(i,j) > ux(j) ) 
                   ui(i,j) = ux(j); 
               end 
           end 
       end 
 
       if (replot > 0) 
         if (rem(iter,replot) == 0 && k==1) 
            figure(3); 
            xplot = zeros(NP); 
            yplot = zeros(NP); 
            xplot = reshape(ui(:,1),1,NP); 
            yplot = reshape(ui(:,2),1,NP); 
            subplot(1,1,1); 
            plot(xplot,yplot,'or'); 
            drawnow; %---Draws current graph now 
         end 
       end 
       
       % Select which vectors are allowed to enter the new min population 
       for i=1:NP 
          tmpx = ui(i,:); 
          tempval = feval(fname,tmpx,D,Extra,0);   % check cost of competitor 
          nfe     = nfe + 1; 
          if (bminval(k) > tempval) 
              if (tempval + gTol < bminval(k)) 
                  improved = 1; 
              end 
              bminval(k) = tempval; 
              minmem(k,:) = tmpx; 
          end 
          if (tempval < val(i)) % if competitor is better 
             pop(i,:) = tmpx;    % replace old vector (for new iteration) 
             val(i)   = tempval;   
          end 
          if (bmaxval(k) < tempval) 
              if (tempval - gTol > bmaxval(k)) 
                  improved = 1; 
              end 
              bmaxval(k) = tempval; 
              maxmem(k,:) = tmpx; 
          end 
          if (tempval > val(NP+i))  % if competitor is better 
             pop(NP+i,:) = tmpx;    % replace old vector (for new iteration) 
             val(NP+i)   = tempval;   
          end 
      end            % end for member i=1:NP 
 
       % process upper branches, nested Max problems  
       for i=1:NP 
           popold(i,:) = pop(NP+i,:);  % save the old population 



       end 
       pm1 = popold(a1,:);             % shuffled population 1 
       pm2 = popold(a2,:);             % shuffled population 2 
       pm3 = popold(a3,:);             % shuffled population 3 
       pm4 = popold(a4,:);             % shuffled population 4 
       pm5 = popold(a5,:);             % shuffled population 5 
       for i=1:NP                           % population filled with the best member 
           for j=1:D 
               bm(i,j) = maxmemit(j); 
           end 
       end 
       mui = rand(NP,D) < CR;          % all random numbers < CR are 1, 0 otherwise 
       if (strategy > 5) 
          st = strategy-5;        % binomial crossover 
       else 
          st = strategy;            % exponential crossover 
          mui=sort(mui');           % transpose, collect 1's in each column 
          for i=1:NP 
             n=floor(rand*D); 
             if n > 0 
                rtd = rem(rotd+n,D); 
                mui(:,i) = mui(rtd+1,i); %rotate column i by n 
            end 
          end 
          mui = mui';         % transpose back 
       end 
       mpo = mui < 0.5;                % inverse mask to mui 
       if (st == 1)                      % DE/best/1 
          ui = bm + F*(pm1 - pm2);         
          ui = popold.*mpo + ui.*mui;      
       elseif (st == 2)                  % DE/rand/1 
          ui = pm3 + F*(pm1 - pm2);        
          ui = popold.*mpo + ui.*mui;      
       elseif (st == 3)                  % DE/rand-to-best/1 
          ui = popold + F*(bm-popold) + F*(pm1 - pm2);         
          ui = popold.*mpo + ui.*mui;      
       elseif (st == 4)                  % DE/best/2 
          ui = bm + F*(pm1 - pm2 + pm3 - pm4);   
          ui = popold.*mpo + ui.*mui;            
       elseif (st == 5)                  % DE/rand/2 
          ui = pm5 + F*(pm1 - pm2 + pm3 - pm4);  
          ui = popold.*mpo + ui.*mui;            
       end 
       % force feasibility of current population for level k 
       for i=1:NP 
           for j=1:D 
               if ( ui(i,j) < lx(j) ) 
                   ui(i,j) = lx(j); 
               end 
               if ( ui(i,j) > ux(j) ) 
                   ui(i,j) = ux(j); 
               end 
           end 
       end 
       if (replot > 0) 
          if (rem(iter,replot) == 0  &&  k==1) 
              figure(4); 
              xplot = zeros(NP); 
              yplot = zeros(NP); 
              xplot = reshape(ui(:,1),1,NP); 
              yplot = reshape(ui(:,2),1,NP); 
              subplot(1,1,1); 
              plot(xplot,yplot,'ob'); 
              drawnow; %---Draws current graph now   
          end 
       end 
        
       % Select which vectors are allowed to enter the new max population 
       for i=1:NP 
          tmpx = ui(i,:); 
          tempval = feval(fname,tmpx,D,Extra,0);   % check cost of competitor 
          nfe     = nfe + 1; 
          if (bmaxval(k) < tempval) 
              if (tempval - gTol > bmaxval(k)) 
                  improved = 1; 
              end 
              bmaxval(k) = tempval; 
              maxmem(k,:) = tmpx; 



          end 
          if (tempval > val(NP+i))  % if competitor is better 
             pop(NP+i,:) = tmpx;     % replace old vector (for new iteration) 
             val(NP+i)   = tempval;   
          end 
          if (bminval(k) > tempval) 
              if (tempval + gTol < bminval(k)) 
                  improved = 1; 
              end 
              bminval(k) = tempval; 
              minmem(k,:) = tmpx; 
          end 
          if (tempval < val(i))  % if competitor is better 
             pop(i,:) = tmpx;     % replace old vector (for new iteration) 
             val(i)   = tempval;   
          end 
       end            % end for member i=1:NP 
       maxmemit(k,:) = maxmem(k,:); % freeze the best member of this iteration for the coming  
                                    % iteration. This is needed for some of the strategies.                      
       minmemit(k,:) = minmem(k,:); % freeze the best member of this iteration for the coming  
                                   % iteration. This is needed for some of the strategies.                      
                                     
       % Intermediate Output section 
       if (reiter > 0) 
          if (rem(iter,reiter) == 0) 
              fprintf(1,'\nGeneration: %d,  Function Evaluations: %d\n',iter, nfe); 
              fprintf(1,'Level: %d,  BestMin: %f,  BestMax: %f\n',k-1,bminval(k),bmaxval(k)); 
          end 
       end 
       % next generation        
       noValid = noValid + 1; 
       if (improved == 1) 
           noValid = 0; 
       end 
       iter = iter + 1; 
    end 
     if nGen < iter - 1 
        nGen = iter-1; 
    end 
 
end    % next level 
 
 
 
% Construct result fuzzy number fU 
iter = 1; 
while (iter > 0) 
    iter = 0; 
    for k = 1:N 
        if  ( bminval(k+1) < bminval(k) ) 
            iter = 1; 
            bminval(k) = bminval(k+1); 
            minmem(k,:) = minmem(k+1,:); 
        end 
        if  ( bmaxval(k+1) > bmaxval(k) ) 
            iter = 1; 
            bmaxval(k) = bmaxval(k+1); 
            maxmem(k,:) = maxmem(k+1,:); 
        end     
    end 
end 
 
TolBound = 0.0001; 
for k=1:N+1 
    dlval = 0.0; 
    lval = bminval(k); 
    tmpx = minmem(k,:); 
    for j=1:D 
        go=0; 
        if ( tmpx(j) < Um(k,j) + TolBound ) 
            go = go+1; 
        end 
        if ( tmpx(j) > Up(k,j) - TolBound) 
            go = go+2; 
        end 
        if (go>0) 
            dval = feval(fname,tmpx,D,Extra,j); 
            if (go == 1) 



                dlval = dlval + dval * dUm(k,j); 
            elseif (go == 2) 
                dlval = dlval + dval * dUp(k,j); 
            elseif (go == 3) 
                if (dval > 0.0) 
                   dlval = dlval + dval*dUm(k,j); 
                else 
                   dlval = dlval + dval*dUp(k,j); 
               end 
            end 
        end 
        if dlval < 0 
            dlval = 0; 
        end 
    end   
 
    duval = 0.0; 
    uval = bmaxval(k); 
    tmpx = maxmem(k,:); 
    for j=1:D 
        go=0; 
        if ( tmpx(j) > Um(k,j) - TolBound ) 
            go = go+2; 
        end 
        if ( tmpx(j) < Up(k,j) + TolBound) 
            go = go+1; 
        end 
        if (go>0) 
            dval = feval(fname,tmpx,D,Extra,j); 
            if (go == 1) 
                duval = duval + dval * dUm(k,j); 
            elseif (go == 2) 
                duval = duval + dval * dUp(k,j); 
            elseif (go == 3) 
                if (dval > 0.0) 
                   duval = duval + dval*dUp(k,j); 
                else 
                   duval = duval + dval*dUm(k,j); 
               end 
            end 
        end 
        if duval > 0 
            duval = 0; 
        end 
    end   
    fU(k,1)  =  lval;     
    fU(k,2)  =  dlval;     
    fU(k,3)  =  uval;     
    fU(k,4)  =  duval;     
end 
for k=1:N 
    if fU(k,1) == fU(k+1,1) 
        fU(k,2) = 0; 
        fU(k+1,2) = 0; 
    end 
    if fU(k,3) == fU(k+1,3) 
        fU(k,4) = 0; 
        fU(k+1,4) = 0; 
    end 
end 
 
 



APPENDIX 2 
Matlab Implementation of the Multiple Populations DE Algorithm: MPDE 
 
 
 
 
 
function [fU, nGen, nfe, nvc] = ... 
    FuzzyMPDE(fname,D,Extra,N,U,Pfact,strategy,reiter,replot,maxGen,gTol,noGen) 
% Fuzzy Extension of a D-dimensional function defined by  
%      f(x) = fname(x,D,Extra,k), 
% using the Single Population differential evolution (SPDE) algorithm. 
% The D-dimensional fuzzy argument U and result fU are in LU-fuzzy format: 
%        U = (Um,dUm,Up,dUp;i=1:N+1) over N uniform alpha's subintervals 
%            in 3-dimensional matrix form 
%            U(i=1:N+1;j=1:D;k=1:4) 
%            where    i  is the index of alpha-cut corresponding to 
%                        alpha(i) = (i-1)/N. (i starts from 1 to N+1) 
%                     j  is the index of a component of U 
%                     k  is 1 for Um, 2 for dUm, 3 for Up, 4 for dUp 
%                        so that  U(i,j,:) are the four LU-fuzzy parameters 
%                        defining U(j) at i-th alpha-cut   
%       fU = (fUm,dfUm,fUp,dfUp;i=1:N+1) over N uniform alpha's subintervals 
%            so that  fU(i,:) are the four LU-fuzzy parameters defining 
%            f(U) at i-th alpha-cut  
%           
% Output: 
%    fU        Fuzzy Extended value f(U) in LU-fuzzy form 
%    nf        number of function evaluations needed 
% 
% Inputs:   
%    fname     string naming a function f(x,y) to minimize 
%    D         number of parameters of the function  
%    Extra     vector of extra values eventually needed to calculate f(x) 
%    Pfact     factor for the number NP = Pfact*D of population members 
%    maxGen    maximum number of generations (>= 200) 
% 
% Value function f(x) has to be defined by the user 
% define fname.m as 
%                function fv = fname(x,D,Extra,k) 
%                   fv = function value f at x if k=0 
%                   fv = partial first derivative of f at x wrt x(k) if k=1:D  
%                end 
% 
% Internal Important Parameters: 
%    F         DE-stepsize (in [0, 2]) 
%    CR        crossover probability (in [0, 1]) 
%    strategy    1 --> DE/best/1/exp           6 --> DE/best/1/bin 
%                2 --> DE/rand/1/exp           7 --> DE/rand/1/bin 
%                3 --> DE/rand-to-best/1/exp   8 --> DE/rand-to-best/1/bin 
%                4 --> DE/best/2/exp           9 --> DE/best/2/bin 
%                5 --> DE/rand/2/exp           else  DE/rand/2/bin 
%    reiter      intermediate output will be produced after "reiter" 
%                iterations. No intermediate output will be produced 
%                if reiter is < 1 
%    replot      same as for reiter, to plot the populations of level k=1 
% 
% Notes: 
%       The code is adapted from   
%             function devec3, (1997), by R. Storn (ICSI, Berkeley) 
%       author: Luciano Stefanini, University of Urbino, Italy, 2006. 
%               lucste@uniurb.it  
%       A good initial guess is to choose F from interval [0.5, 1], 
%       the crossover probability CR from interval [0, 1] helps to maintain 
%       the diversity of the population and is rather uncritical. The 
%       number of population members NP is also not very critical. A 
%       good initial guess is 10*D. Depending on the difficulty of the 
%       problem NP can be lower than 10*D or must be higher than 10*D 
%       to achieve convergence. 
%       If the parameters are correlated, high values of CR work better. 
%       The reverse is true for no correlation. 
% 
% This program is free software; you can redistribute and/or modify it. 
% It is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. 
 



% default values: 
NP = Pfact*D;   
F = 0.8;  
CR = 0.5;  
 
if (NP < 5) 
   NP=5; 
end 
if (maxGen <= 0) 
   maxGen = 200; 
end 
reiter = floor(reiter); 
replot = floor(replot); 
if ( D < 2  ||  D > 2 )  
    replot = 0; 
end 
 
% Initialize arrays 
Um  = zeros(N+1,D); 
Up  = zeros(N+1,D); 
dUm = zeros(N+1,D); 
dUp = zeros(N+1,D); 
for k=1:N+1 
    for j=1:D 
        Um(k,j)  = U(k,j,1); 
        Up(k,j)  = U(k,j,3); 
        dUm(k,j) = U(k,j,2); 
        dUp(k,j) = U(k,j,4); 
    end 
end 
fU  = zeros(N+1,4); 
 
 
pop = zeros(2*NP,N+1,D); 
bminval = zeros(1,N+1); 
bmaxval = zeros(1,N+1); 
lx  = zeros(1,D); 
ux  = zeros(1,D); 
% populations 1 to NP for lower branch and NP+1 to 2NP for upper branch 
for k=1:N+1 
    lx  = reshape(Um(k,:),1,D); 
    ux  = reshape(Up(k,:),1,D); 
    for i=1:2*NP 
        pop(i,k,:) = lx + rand(1,D).*(ux - lx);  
    end 
end 
 
nfe       = 0;            % number of function evaluations 
nvcross   = 0;            % number of valid improvement across levels 
% Evaluate initial populations 
tmpx      = zeros(1,D); 
for k=1:N+1 
    for i=1:2*NP  
        tmpx = reshape(pop(i,k,:),1,D); 
        val(i,k) = feval(fname,tmpx,D,Extra,0); 
        nfe  = nfe + 1; 
    end 
end 
% identify best initial values for each cut 
for k=1:N+1 
    imin    = 1; 
    imax    = 1; 
    kmin    = k; 
    kmax    = k; 
    minval = val(1,k); 
    maxval = val(1,k); 
    for kk=1:N+1 
        for i=1:2*NP 
            % test if pop(i,kk,:) is feasible for level k 
            feas = 1; 
            if (kk < k) 
                for j=1:D 
                    if ( (pop(i,kk,j)<Um(k,j) ) || (pop(i,kk,j)>Up(k,j) ) ) 
                        feas = 0; 
                    end 
                end 
            end 
            if (feas == 1)      % if yes, use to find min and max 



               if (val(i,kk) < minval) 
                   imin   = i; 
                   kmin   = kk; 
                   minval = val(i,kk); 
               end 
               if (val(i,kk) > maxval) 
                  imax   = i; 
                  kmax   = kk; 
                  maxval = val(i,kk); 
               end 
            end 
        end    
    end 
    bminval(k)    = minval;           % best min value ever 
    bmaxval(k)    = maxval;           % best max value ever 
    minmemit(k,:) = pop(imin,kmin,:); % best min member of current iteration 
    minvalit(k)   = minval;           % best min value of current iteration 
    minmem(k,:)   = minmemit(k,:);    % best min member ever 
    maxmemit(k,:) = pop(imax,kmax,:); % best max member of current iteration 
    maxvalit(k)   = maxval;           % best max value of current iteration 
    maxmem(k,:)   = maxmemit(k,:);    % best max member ever 
     
end 
 
%------popold is the population which has to compete. It is-------- 
%------static through one iteration. pop is the newly-------------- 
%------emerging population.---------------------------------------- 
 
% for min subpopulations 
popoldmin = zeros(NP,D);        % toggle populations 
pm1min = zeros(NP,D);              % initialize population matrix 1 
pm2min = zeros(NP,D);              % initialize population matrix 2 
pm3min = zeros(NP,D);              % initialize population matrix 3 
pm4min = zeros(NP,D);              % initialize population matrix 4 
pm5min = zeros(NP,D);              % initialize population matrix 5 
bmmin  = zeros(NP,D);              % initialize bestmember  matrix 
uimin  = zeros(NP,D);              % intermediate population of perturbed vectors 
% for max subpopulations 
popoldmax = zeros(NP,D);        % toggle populations 
pm1max = zeros(NP,D);              % initialize population matrix 1 
pm2max = zeros(NP,D);              % initialize population matrix 2 
pm3max = zeros(NP,D);              % initialize population matrix 3 
pm4max = zeros(NP,D);              % initialize population matrix 4 
pm5max = zeros(NP,D);              % initialize population matrix 5 
bmmax  = zeros(NP,D);              % initialize bestmember  matrix 
uimax  = zeros(NP,D);              % intermediate population of perturbed vectors 
mui = zeros(NP,D);              % mask for intermediate population 
mpo = zeros(NP,D);              % mask for old population 
rot = (0:1:NP-1);               % rotating index array (size NP) 
rotd= (0:1:D-1);                % rotating index array (size D) 
rt  = zeros(NP);                % another rotating index array 
rtd = zeros(D);                 % rotating index array for exponential crossover 
a1  = zeros(NP);                % index array 
a2  = zeros(NP);                % index array 
a3  = zeros(NP);                % index array 
a4  = zeros(NP);                % index array 
a5  = zeros(NP);                % index array 
ind = zeros(4); 
 
iter = 1; 
noValid = 0; 
while ((iter <= maxGen) & (noValid < noGen)) 
    improved = 0; 
    ind = randperm(4);                 % index pointer array 
    a1  = randperm(NP);                % shuffle locations of vectors 
    rt = rem(rot+ind(1),NP);           % rotate indices by ind(1) positions 
    a2  = a1(rt+1);                    % rotate vector locations 
    rt = rem(rot+ind(2),NP); 
    a3  = a2(rt+1);                 
    rt = rem(rot+ind(3),NP); 
    a4  = a3(rt+1);                
    rt = rem(rot+ind(4),NP); 
    a5  = a4(rt+1);                 
 
    for k=1:N+1           % for each level k=1:N+1 
     
      % process lower and upper branches together, nested Min problems 
      for i=1:NP 



          popoldmin(i,:) = pop(i,k,:);     % save the old min population 
          popoldmax(i,:) = pop(NP+i,k,:);  % save the old max population 
      end 
      pm1min = popoldmin(a1,:);       % shuffled population 1 
      pm2min = popoldmin(a2,:);       % shuffled population 2 
      pm3min = popoldmin(a3,:);       % shuffled population 3 
      pm4min = popoldmin(a4,:);       % shuffled population 4 
      pm5min = popoldmin(a5,:);       % shuffled population 5 
      pm1max = popoldmax(a1,:);       % shuffled population 1 
      pm2max = popoldmax(a2,:);       % shuffled population 2 
      pm3max = popoldmax(a3,:);       % shuffled population 3 
      pm4max = popoldmax(a4,:);       % shuffled population 4 
      pm5max = popoldmax(a5,:);       % shuffled population 5 
      for i=1:NP    % population filled with best member of last iteration 
          bmmin(i,:) = minmemit(k,:); 
          bmmax(i,:) = maxmemit(k,:); 
      end 
      mui = rand(NP,D) < CR;  % all random numbers < CR are 1, 0 otherwise 
      if (strategy > 5) 
         st = strategy-5;  % binomial crossover 
      else 
         st = strategy;      % exponential crossover 
         mui=sort(mui');     % transpose, collect 1's in each column 
         for i=1:NP 
            n=floor(rand*D); 
            if n > 0 
               rtd = rem(rotd+n,D); 
               mui(:,i) = mui(rtd+1,i); %rotate column i by n 
           end 
         end 
         mui = mui';         % transpose back 
      end 
      mpo = mui < 0.5;                % inverse mask to mui 
      if (st == 1)                      % DE/best/1 
         uimin = bmmin + F*(pm1min - pm2min);         
         uimin = popoldmin.*mpo + uimin.*mui;      
         uimax = bmmax + F*(pm1max - pm2max);         
         uimax = popoldmax.*mpo + uimax.*mui;      
      elseif (st == 2)                  % DE/rand/1 
         uimin = pm3min + F*(pm1min - pm2min);        
         uimin = popoldmin.*mpo + uimin.*mui;      
         uimax = pm3max + F*(pm1max - pm2max);        
         uimax = popoldmax.*mpo + uimax.*mui;      
      elseif (st == 3)                  % DE/rand-to-best/1 
         uimin = popoldmin + F*(bmmin-popoldmin) + F*(pm1min - pm2min);         
         uimin = popoldmin.*mpo + uimin.*mui;      
         uimax = popoldmax + F*(bmmax-popoldmax) + F*(pm1max - pm2max);         
         uimax = popoldmax.*mpo + uimax.*mui;      
      elseif (st == 4)                  % DE/best/2 
         uimin = bmmin + F*(pm1min - pm2min + pm3min - pm4min);   
         uimin = popoldmin.*mpo + uimin.*mui;            
         uimax = bmmax + F*(pm1max - pm2max + pm3max - pm4max);   
         uimax = popoldmax.*mpo + uimax.*mui;            
      elseif (st == 5)                  % DE/rand/2 
         uimin = pm5min + F*(pm1min - pm2min + pm3min - pm4min);  
         uimin = popoldmin.*mpo + uimin.*mui;            
         uimax = pm5max + F*(pm1max - pm2max + pm3max - pm4max);  
         uimax = popoldmax.*mpo + uimax.*mui;            
      end 
      % force feasibility of current population for level k 
      for i=1:NP 
          for j=1:D 
              if ( uimin(i,j) < Um(k,j) ) 
                  uimin(i,j) = Um(k,j); 
              end 
              if ( uimin(i,j) > Up(k,j) ) 
                  uimin(i,j) = Up(k,j); 
              end 
              if ( uimax(i,j) < Um(k,j) ) 
                  uimax(i,j) = Um(k,j); 
              end 
              if ( uimax(i,j) > Up(k,j) ) 
                  uimax(i,j) = Up(k,j); 
              end 
          end 
      end 
 
      if (replot > 0) 



       if (rem(iter,replot) == 0 && k==1) 
           figure(3); 
           xplot = zeros(NP); 
           yplot = zeros(NP); 
           xplot = reshape(uimin(:,1),1,NP); 
           yplot = reshape(uimin(:,2),1,NP); 
           subplot(1,1,1); 
           plot(xplot,yplot,'or'); 
           drawnow; %---Draws current graph now 
           figure(4); 
           xplot = reshape(uimax(:,1),1,NP); 
           yplot = reshape(uimax(:,2),1,NP); 
           subplot(1,1,1); 
           plot(xplot,yplot,'or'); 
           drawnow; %---Draws current graph now 
       end 
      end 
       
      % Select which vectors are allowed to enter the new min/max population 
      for i=1:NP 
         tmpxmin = uimin(i,:); 
         tempvalmin = feval(fname,tmpxmin,D,Extra,0);   % check cost of competitor 
         nfe     = nfe + 1; 
         tmpxmax = uimax(i,:); 
         tempvalmax = feval(fname,tmpxmax,D,Extra,0);   % check cost of competitor 
         nfe     = nfe + 1; 
         for kk=1:N+1   % consider all cuts for which new element is feasible 
             feasmin = 1; 
             feasmax = 1; 
             if (kk > k) 
                 for j=1:D 
                     if ( tmpxmin(j) < Um(kk,j) || tmpxmin(j) > Up(kk,j) ) 
                         feasmin = 0; 
                     end 
                     if ( tmpxmax(j) < Um(kk,j) || tmpxmax(j) > Up(kk,j) ) 
                         feasmax = 0; 
                     end 
                 end 
             end 
             if ( feasmin == 1 ) 
                if (bminval(kk) > tempvalmin) 
                    if (tempvalmin + gTol < bminval(kk)) 
                        improved = 1; 
                    end 
                    bminval(kk) = tempvalmin; 
                    minmem(kk,:) = tmpxmin; 
                    nvcross = nvcross + 1; 
                end 
                if (bmaxval(kk) < tempvalmin) 
                    if (tempvalmin - gTol > bmaxval(kk)) 
                        improved = 1; 
                    end 
                    bmaxval(kk) = tempvalmin; 
                    maxmem(kk,:) = tmpxmin; 
                    nvcross = nvcross + 1; 
                end           
                if (tempvalmin < val(i,kk)) % if competitor is better 
                   pop(i,kk,:) = tmpxmin;    % replace old vector (for new iteration) 
                   val(i,kk)   = tempvalmin;   
                end 
                if (tempvalmin > val(NP+i,kk)) % if competitor is better 
                   pop(NP+i,kk,:) = tmpxmin;    % replace old vector (for new iteration) 
                   val(NP+i,kk)   = tempvalmin;   
                end 
             end 
             if ( feasmax == 1) 
                if (bmaxval(kk) < tempvalmax) 
                    if (tempvalmax - gTol > bmaxval(kk)) 
                        improved = 1; 
                    end 
                    bmaxval(kk) = tempvalmax; 
                    maxmem(kk,:) = tmpxmax; 
                    nvcross = nvcross + 1; 
                end 
                if (bminval(kk) > tempvalmax) 
                    if (tempvalmax + gTol < bminval(kk)) 
                        improved = 1; 
                    end 



                    bminval(kk) = tempvalmax; 
                    minmem(kk,:) = tmpxmax; 
                    nvcross = nvcross + 1; 
                end 
                if (tempvalmax > val(NP+i,kk)) % if competitor is better 
                   pop(NP+i,kk,:) = tmpxmax;    % replace old vector (for new iteration) 
                   val(NP+i,kk)   = tempvalmax;   
                end 
                if (tempvalmax < val(i,kk)) % if competitor is better 
                   pop(i,kk,:) = tmpxmax;    % replace old vector (for new iteration) 
                   val(i,kk)   = tempvalmax;   
                end 
             end 
         end 
      end            % end for member i=1:NP 
      minmemit(k,:) = minmem(k,:);  % freeze the best member of this iteration for the coming  
                                    % iteration. This is needed for some of the strategies.                      
      maxmemit(k,:) = maxmem(k,:);  % freeze the best member of this iteration for the coming  
                                    % iteration. This is needed for some of the strategies.                     
   end    % next level 
 
   % Intermediate Output section 
   if (reiter > 0) 
      if (rem(iter,reiter) == 0) 
          fprintf(1,'\nGeneration: %d,  Function Evaluations: %d\n',iter, nfe); 
          for k=1:N+1 
              fprintf(1,'Level: %d,  BestMin: %f,  BestMax: %f\n',k-1,bminval(k),bmaxval(k)); 
          end 
      end 
   end 
    
   noValid = noValid + 1; 
   if (improved == 1) 
       noValid = 0; 
   end 
   iter = iter + 1; 
end      % next generation        
  
nGen = iter - 1; 
nvc = nvcross; 
 
% Construct result fuzzy number fU 
iter = 1; 
while (iter > 0) 
    iter = 0; 
    for k = 1:N 
        if  ( bminval(k+1) < bminval(k) ) 
            iter = 1; 
            bminval(k) = bminval(k+1); 
            minmem(k,:) = minmem(k+1,:); 
        end 
        if  ( bmaxval(k+1) > bmaxval(k) ) 
            iter = 1; 
            bmaxval(k) = bmaxval(k+1); 
            maxmem(k,:) = maxmem(k+1,:); 
        end     
    end 
end 
 
TolBound = 0.0001; 
for k=1:N+1 
    dlval = 0.0; 
    lval = bminval(k); 
    tmpx = minmem(k,:); 
    for j=1:D 
        go=0; 
        if ( tmpx(j) < Um(k,j) + TolBound ) 
            go = go+1; 
        end 
        if ( tmpx(j) > Up(k,j) - TolBound) 
            go = go+2; 
        end 
        if (go>0) 
            dval = feval(fname,tmpx,D,Extra,j); 
            if (go == 1) 
                dlval = dlval + dval * dUm(k,j); 
            elseif (go == 2) 
                dlval = dlval + dval * dUp(k,j); 



            elseif (go == 3) 
                if (dval > 0.0) 
                   dlval = dlval + dval*dUm(k,j); 
                else 
                   dlval = dlval + dval*dUp(k,j); 
               end 
            end 
        end 
        if dlval < 0 
            dlval = 0; 
        end 
    end   
 
    duval = 0.0; 
    uval = bmaxval(k); 
    tmpx = maxmem(k,:); 
    for j=1:D 
        go=0; 
        if ( tmpx(j) > Um(k,j) - TolBound ) 
            go = go+2; 
        end 
        if ( tmpx(j) < Up(k,j) + TolBound) 
            go = go+1; 
        end 
        if (go>0) 
            dval = feval(fname,tmpx,D,Extra,j); 
            if (go == 1) 
                duval = duval + dval * dUm(k,j); 
            elseif (go == 2) 
                duval = duval + dval * dUp(k,j); 
            elseif (go == 3) 
                if (dval > 0.0) 
                   duval = duval + dval*dUp(k,j); 
                else 
                   duval = duval + dval*dUm(k,j); 
               end 
            end 
        end 
        if duval > 0 
            duval = 0; 
        end 
    end   
    fU(k,1)  =  lval;     
    fU(k,2)  =  dlval;     
    fU(k,3)  =  uval;     
    fU(k,4)  =  duval;     
end 
for k=1:N 
    if fU(k,1) == fU(k+1,1) 
        fU(k,2) = 0; 
        fU(k+1,2) = 0; 
    end 
    if fU(k,3) == fU(k+1,3) 
        fU(k,4) = 0; 
        fU(k+1,4) = 0; 
    end 
end 
 
 


