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Abstract. In this paper we illustrate the LU representation of fuzzy
numbers and present an LU-fuzzy calculator, in order to explain the use
of the LU-fuzzy model and to show the advantage of the parametriza-
tion. The model can be applied either in the level-cut or in generalized LR
frames. The hand-like fuzzy calculator has been developed for the MS-
Windows platform and produces the basic fuzzy calculus: the arithmetic
operations (scalar multiplication, addition, subtraction, multiplication,
division) and the fuzzy extension of many univariate functions (expo-
nential, logarithm, power with numeric or fuzzy exponent, sin, arcsin,
cos, arccos, tan, arctan, square root, Gaussian, hyperbolic sinh, cosh,
tanh and inverses, erf and erfc error functions, cumulative standard nor-
mal distribution).

1 Introduction

The arithmetic operations on fuzzy numbers are usually approached either by
the use of the extension principle (in the domain of the membership function,
[8]) or by the interval arithmetics (in the domain of the α− cuts) as outlined by
Dubois and Prade ([1]); the same authors have introduced the well known LR
model and the corresponding formulas for the fuzzy operations ([2]); an extensive
survey and bibliography is in [3].
In [4], the use of monotonic splines is suggested to approximate fuzzy num-

bers, using several interpolation forms and a procedure is described to control
the error of the approximation. The parametric LU representation allows a large
set of possible shapes (types of membership functions) that seems to be much
wider than the well-known LR framework (see also [6] and [7]).
The paper is organized as follows: in sections 2 and 3 we describe the LU-

fuzzy model and calculus and some example algorithms which implement the
LU-fuzzy extension principle for unidimensional elementary functions. Section 5
contains a description of the LU-fuzzy calculator.

1.1 Basic fuzzy calculus

We adopt the so called a− cut setting for the definition of a fuzzy number:

Definition 1. A continuous fuzzy number (or interval) u is any pair (u−, u+)
of functions u± : [0, 1] −→ R satisfying the following conditions:
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(i) u− : α −→ u−α ∈ R is a bounded monotonic increasing (non decreasing)
continuous function ∀α ∈ [0, 1] ;
(ii) u+ : α −→ u+α ∈ R is a bounded monotonic decreasing (non increasing)
continuous function ∀α ∈ [0, 1] ;
(iii) u−α ≤ u+α ∀α ∈ [0, 1] .

The notation uα = [u
−
α , u

+
α ] is used explicitly for the α − cuts of u. We will

also refer to u− and u+ as the lower and the upper branches on u, respectively. If
u = (u−, u+) and v = (v−, v+) are two given fuzzy numbers, the interval-based
arithmetic operations are defined in the usual way, for α ∈ [0, 1]:
(Addition) (u+ v)α = [u

−
α + v−α , u+α + v+α ] .

(Scalar Multiplication) For k ∈ R, (ku)α = [min {ku−α , ku+α} ,max {ku−α , ku+α}].
(Subtraction) (u− v)α = [u

−
α − v+α , u

+
α − v−α ].

(Multiplication)
½
(uv)

−
α = min {u−α v−α , u−α v+α , u+αv−α , u+αv+α }

(uv)+α = max {u−α v−α , u−α v+α , u+αv−α , u+αv+α }
.

(Division) If 0 /∈ £v−0 , v+0 ¤ ,

¡
u
v

¢−
α
= min

n
u−α
v−α

,
u−α
v+α

,
u+α
v−α

,
u+α
v+α

o
¡
u
v

¢+
α
= max

n
u−α
v−α

,
u−α
v+α

,
u+α
v−α

,
u+α
v+α

o .

2 LU-fuzzy representation and calculus

The parametric LU representation of a fuzzy number is defined on a decompo-
sition of the interval [0, 1] , 0 = α0 < α1 < ..... < αi−1 < αi < .... < αN = 1
for both the lower u−(α) and the upper u+(α) branches. In each of the N
subintervals Ii = [αi−1, αi], i = 1, 2, ..., N, the values of the two functions
u−(αi−1) = u−0,i, u+(αi−1) = u+0,i, u−(αi) = u−1,i, u+(αi) = u+1,i and their first
derivatives u0−(αi−1) = d−0,i, u0+(αi−1) = d+0,i, u0−(αi) = d−1,i, u0+(αi) = d+1,i
are assumed to be known; we are interested in families of monotonic functions
that satisfy the above eight Hermite-type conditions for each subinterval Ii. In
general, by transforming each subinterval Ii into the standard [0, 1] interval, i.e.
tα =

α−αi−1
αi−αi−1 , α ∈ Ii, we can determine each piece independently and obtain

piecewise continuous LU-fuzzy numbers. Globally continuous or more regular
C(1) fuzzy numbers can be obtained directly from the data if the following con-
ditions are met for the values and possibly for the slopes:

u−1,i = u−0,i+1, u+1,i = u+0,i+1, d−1,i = d−0,i+1, d+1,i = d+0,i+1, for i = 1, 2, ..., N − 1.

Let pi (tα) be a model function for uα on a generic subinterval Ii; then, for
tα ∈ [0, 1] we have

pi (tα) = u(αi−1 + tα(αi − αi−1)) (1)

p0i (tα) = u0(αi−1 + tα(αi − αi−1))(αi − αi−1).
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Proposed p (t) functions are the (2,2)-rational monotonic spline

p (t) =

½P (t)
Q(t) if u1 6= u0

u0 if u1 = u0
, where

P (t) = (u1 − u0)u1t
2 + (u0d1 + u1d0) t(1− t) + (u1 − u0)u0 (1− t)2

Q(t) = (u1 − u0) t
2 + (d1 + d0) t(1− t) + (u1 − u0) (1− t)

2
;

the (3,2)-rational monotonic spline

p (t) =
P (t)

Q(t)
with

P (t) = u0 (1− t)3 + (wu0 + d0) t (1− t)2 + (wu1 − d1) t
2 (1− t) + u1t

3

Q(t) = 1 + t (1− t) (w − 3)
w =

d0 + d1
u1 − u0

to have monotonicity;

and the monotonic mixed cubic-exponential spline

p(t) = u0 + (u1 − u0 − d0 + d1
a

)t2(3− 2t) + d0
a
− d0

a
(1− t)a +

d1
a
ta

a = 1 +
d0 + d1
u1 − u0

to have monotonicity.

The models include linear (i.e. triangular fuzzy numbers), monotonic quadratic
and monotonic cubic polynomials as special cases.
Using one of the previous forms to represent the lower and the upper branches

of the fuzzy number u = (u−, u+) we can write the general form of the repre-
sentation (the symbol δ is used to denote the slopes or first derivatives).

u = (u−0,i, δu
−
0,i, u

−
1,i, δu

−
1,i;u

+
0,i, δu

+
0,i, u

+
1,i, δu

+
1,i)i=1,...,N

m
uα = [pi(tα;u

−
0,i,
fδu−0,i, u−1,i,fδu−1,i), pi(tα;u+0,i,fδu+0,i, u+1,i,fδu+1,i)]i=1,2,...,N (2)

with fδuk,i = δuk,i(αi − αi−1), k = 0, 1. For N ≥ 1 we have a total of 8N
parameters u−0,1 ≤ u−1,1 ≤ u−0,2 ≤ u−1,2 ≤ ... ≤ u−0,N ≤ u−1,N , δu

−
k,i ≥ 0 defining the

increasing lower branch u−α and u+0,1 ≥ u+1,1 ≥ u+0,2 ≥ u+1,2 ≥ ... ≥ u+0,N ≥ u+1,N ,
δu+k,i ≤ 0 defining the decreasing upper branch u+α (obviously, also u

−
1,N ≤ u+1,N

is required).
A simplification of (2) can be obtained by requiring differentiable branches:

u−1,i = u−0,i+1, u
+
1,i = u+0,i+1 and δu−k,i = δu−k,i+1, δu

+
k,i = δu+k,i+1. The number of

parameters is reduced to 4N + 4 and we can write

u = (u−i , δu
−
i , u

+
i , δu

+
i )i=0,1,...,N with the data (3)

u−0 ≤ u−1 ≤ ... ≤ u−N ≤ u+N ≤ u+N−1 ≤ ... ≤ u+0 and the slopes

δu−i ≥ 0, δu+i ≤ 0.
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3 Arithmetic operations

Given u = (u−i , δu
−
i , u

+
i , δu

+
i )i=0,1,...,N and v = (v−i , δv

−
i , v

+
i , δv

+
i )i=0,1,...,N ,

the arithmetic operators associated to the LU representation can be obtained
easily.©

u+ v = (u−i + v−i , δu
−
i + δv−i , u

+
i + v+i , δu

+
i + δv+i )i=0,1,...,N½

ku = (ku−i , kδu
−
i , ku

+
i , kδu

+
i )i=0,1,...,N , if k ≥ 0

ku = (ku+i , kδu
+
i , ku

−
i , kδu

−
i )i=0,1,...,N , if k < 0

{u− v = u+ (−v)

w = uv =
¡
w−i , δw

−
i , w

+
i , δw

+
i

¢
i=0,1,...,N

with
w−i = min{u−i v−i , u−i v+i , u+i v−i , u+i v+i }
w+i = max{u−i v−i , u−i v+i , u+i v−i , u+i v+i }
w−i = u

p−i
i v

q−i
i and w+i = u

p+i
i v

q+i
i

δw−i = δu
p−i
i v

q−i
i + u

p−i
i δv

q−i
i , δw+i = δu

p+i
i v

q+i
i + u

p+i
i δw

q+i
i

z = u/v =
¡
z−i , δz

−
i , z

+
i , δz

+
i

¢
i=0,1,...,N

with

(u/v)−i = min{u−i /v−i , u−i /v+i , u+i /v−i , u+i /v+i }
(u/v)+i = max{u−i /v−i , u−i /v+i , u+i /v−i , u+i /v+i }
z−i = u

r−i
i /v

s−i
i and z+i = u

r+i
i /v

s+i
i

δz−i = (δu
r−i
i v

s−i
i − u

r−i
i δv

s−i
i )/(v

s−i
i )

2, δz+i = (δu
r+i
i v

s+i
i − u

r+i
i δv

s+i
i )/(v

s+i
i )

2

where, for the multiplication, (p−i , q
−
i ) is the pair of superscripts + and − giving

the minimum (uv)−i and similarly (p+i , q
+
i ) is the pair of + and − giving the

maximum (uv)+i ; analogous symbols can be deduced for the division, (r
−
i , s

−
i )

is the pair of + and − giving the minimum in (u/v)−i and (r
+
i , s

+
i ) is the pair of

+ and − giving the maximum in (u/v)+i .
As pointed out by the results of the experimentation reported in [4], the

operations above are exact at the nodes αi of the representation and have very
small global errors on [0, 1]. Further, it is easy to control the error by introducing
additional nodes into the representation or by using a sufficiently high number
of nodes with max {αi − αi−1} sufficiently small. To control the error of the
approximation, we can proceed by increasing the number N + 1 of points; a
possible strategy is to double the number of points by using N = 2K and by
moving automatically to N = 2K+1 if a better precision is necessary.
The results in [4] of the parametric operators have shown that both the

rational and the mixed models perform well with small N ≤ 4, with a percentage
average error for a single multiplication and division of the order of 0.1%.

3.1 Fuzzy extension of univariate functions

The fuzzy extension of a single (real) variable (differentiable) function f : R→ R
to a fuzzy argument uα = [u−α , u+α ] has α− cuts

f (u)α = [min {f (x) | x ∈ uα} ,max {f (x) | x ∈ uα}] . (4)
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If f is monotonic increasing we obtain f (u)α = [f (u−α ) , f (u
+
α )] while, if f is

monotonic decreasing, f (u)α = [f (u
+
α ) , f (u

−
α )] .

Let X be the LU-fuzzy number X =
¡
x−i , δx

−
i , x

+
i , δx

+
i

¢
i=0,1,...,N

; then its

image Y = f(X) =
¡
y−i , δy

−
i , y

+
i , δy

+
i

¢
i=0,1,...N

is calculated as follows: let bx−i ∈
[x−i , x

+
i ] and bx+i ∈ [x−i , x+i ] be the points where min©f (x) | x ∈ [x−i , x+i ]ª and

max
©
f (x) | x ∈ [x−i , x+i ]

ª
are attained; possibly, bx−i , bx+i are one of the extremes

x−i , x
+
i of the interval or may be internal points (where the derivative of f is zero).

We then have

y−i = f(bx−i )
y+i = f(bx+i )

δy−i =

f 0(bx−i )δx−i if bx−i = x−i is the left extreme point of the internal
f 0(bx−i )δx+i if bx−i = x+i is the right extreme point of the internal
0 if bx−i ∈]x−i , x+i [ is an internal point

δy+i =

f 0(bx+i )δx−i if bx+i = x−i is the left extreme point of the internal
f 0(bx+i )δx+i if bx+i = x+i is the right extreme point of the internal
0 if bx+i ∈]x−i , x+i [ is an internal point

Example 1: fuzzy extension of hyperbolic cosinusoidal function

Let

Y = cosh (X) =
eX + e−X

2

For each i = 0, 1, ..., N :

if X+
i ≤ 0 then


Y −i = cosh

¡
X+
i

¢
Y +
i = cosh

¡
X−i

¢
δY −i = δX+

i sinh
¡
X+
i

¢
δY +

i = δX−i sinh
¡
X−i

¢
else if X+

i ≤ 0 then


Y −i = cosh

¡
X−i

¢
Y +
i = cosh

¡
X+
i

¢
δY −i = δX−i sinh

¡
X−i

¢
δY +

i = δX+
i sinh

¡
X+
i

¢
else


Y −i = 1 , δY −i = 0

if abs(X−i ) ≥ abs(X+
i )

then
½

Y +
i = cosh

¡
X−i

¢
δY +

i = δX−i sinh
¡
X−i

¢
else

½
Y +
i = cosh

¡
X+
i

¢
δY +

i = δX+
i sinh

¡
X+
i

¢
Example 2: fuzzy extension of erf and erfc error functions
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Let

erf(x) =
2√
π

xZ
0

exp
¡−t2¢ dt = (increasing)

= 1− 2√
π

+∞Z
x

exp
¡−t2¢ dt = 1− erf c (x) with

erf c (x) =
2

π

+∞Z
x

exp
¡−t2¢ dt (decreasing).

We use the following approximation, having a fractional error less than 1.2 ×
10−7 :

z = abs (x)

t =
1

1 + 1
2z

erf c =

 t exp
¡−z2 + p (t)

¢
if x ≥ 0

2− t exp
¡−z2 + p (t)

¢
if x < 0

with

p (t) = a0 + t (a1 + t (a2 + t (a3 + t (a4 + t (a5 + t (a6 + t (a7 + t (a8 + ta9))))))))

a0 = −1.26551223 a5 = 0.27886807
a1 = 1.00002368 a6 = −1.13520398
a2 = 0.37409196 a7 = 1.48851587
a3 = 0.09678418 a8 = −0.82215223
a4 = −0.18628806 a9 = 0.17087277

Let Y = erf (X) . For each i = 0, 1, ..., N


Y −i = erf

¡
X−i

¢
Y +
i = erf

¡
X+
i

¢
δY −i = δX−i

2√
π
exp

¡−X−i ¢2
δY +

i = δX+
i

2√
π
exp

¡−X+
i

¢2
Let now Y = erf c (X). For each i = 0, 1, ..., N


Y −i = erf c

¡
X+
i

¢
Y +
i = erf c

¡
X−i

¢
δY −i = −δX+

i
2√
π
exp

¡−X+
i

¢2
δY +

i = −δX−i 2√
π
exp

¡−X−i ¢2
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The cumulative normal function Φ (x) = 1√
2π

xZ
−∞

exp
³
− t2

2

´
dt, x ∈ R, can be

calculated by

Φ (x) =


1
2

³
1 + erf

³
x√
2

´´
if x ≥ 0

1
2

³
1− erf

³
− x√

2

´´
if x < 0

Let Y = Φ (X). For each i = 0, 1, ..., N


Y −i = Φ

¡
X−i

¢
Y +
i = Φ

¡
X+
i

¢
δY −i = δX−i

1√
2π
exp(

−X−2i

2 )

δY +
i = δx+i

1√
2π
exp(

−X+2
i

2 )

4 Implementation of the LU-fuzzy calculator

A hand-like fuzzy calculator has been implemented by a Windows-based frame.

It works by first defining input fuzzy numbers X and Y using the LU-fuzzy
representation and produces Z as result of operations. Three boxes are designed



8

to contain the LU-fuzzy representation (grid) of the fuzzy numbers X,Y and Z.

For each element u ∈ {X,Y,Z}, the grid box contains the LU-values αi, u−i ,
δu−i , u

+
i and δu

+
i respectively. To start the calculations, we have implemented a

set of predefined types, including triangular, trapezoidal, general parametrized
LU and LR fuzzy numbers.

For any given type, it is possible to define the number N of subintervals (N +1
points) in the uniform α−decomposition: all the calculations are performed ex-
actly at the nodes of the decomposition and the monotonic splines are then used
to interpolate at other values of α ∈ [0, 1]. It is possible to plot the membership
functions of the inputs, the intermediate or final results. The Plot button opens a
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popup window with the graph of the membership function of the corresponding
fuzzy number. To obtain the graphs or other representations, one of the models
(rational or mixed monotonic splines) can be selected.

The standard arithmetic operations Z = X + Y, Z = X − Y, Z = X ∗ Y,
Z = X/Y and the fuzzy extension of many elementary unidimensional functions
are included. The actual implemented functions are Z = XY , Z = Y X and,
choosing K = X or K = Y , Z = sin(K), Z = arcsin(K), Z = cos(K), Z =
arccos(K), Z = tan(K), Z = arctan(K), Z = sinh(K), Z = sinh−1(K), Z =
cosh(K), Z = cosh−1(K), Z = tanh(K), Z = tanh−1(K), Z = 1/K, Z = aK
(a ∈ R), Z = K2, Z = K±n (n ∈ N), Z = √K, Z = ln(K), Z = exp(K), Z =
exp(−K), Z = (a+K)±n, Z = Ka, Z = exp(−K2), Z = 1√

2π
exp(−12K2), Z =

erf(K), Z = erfc(K), Z = Normal(K) = 1√
2π

KR
−∞

exp(−12 t2)dt. Finally, some
Hedge linguistic fuzzy operators are implemented (very, more or less, ...). The
calculations are performed by clicking the button of the corresponding operation.
The left group of buttons involves the binary operations. The second group of
operators require the assigment of eitherX or Y to the temporaryK and operate
on K itself putting the result into Z.

It is possible to save a given (X, Y or Z) temporary result into a stored list
(Put in List button), by assigning a name to it; a saved fuzzy number can be
reloaded either in X or Y for further use (Get from List button). The data are
saved into a formatted file having the same user-defined name.
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We illustrate an example Z = Normal(X). First select a type of fuzzy
number (trapezoidal, LU or LR) and set the number N of subintervals in the
α−decomposition (the higher N the higher the precision in the calculations);
the maximal value of N is 100; typical values are 2, 4, 8, 10. If the selection is
loaded into the X-area, the corrisponding grid appears. To see the membership
function of X, click the corresponding Plot button and a popup window appears.
To apply the fuzzy extension to X, first select the assigment K = X and then
click the Z = Normal(K) button.

A detailed description of the calculator is in [5].
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